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SECTION 1

INTRODUCTION

This is the final report for a three-year research program on
imaging with thinned sparse arrays of antennas or apertures. In the
last year we have studied the foundations of the maximum entropy (ME)
estimation method and its application to the restoration and super-
resolution of images that have been degraded by undersampling and by
the finite aperture of the sparse array. Extensive computer simulations
were performed on one- and two-dimensional image signals to test the

theoretical formulations of ME. This method of approach gives the

results a certain generality in wavelength and physical scale that
would have been extremely time consuming to obtain using the data
from direct physical experimentation,

The simulations of imaging with sparse arrays provided important
and surprising results. We summarize here the impertant points of
our previous two-year study of these arrays. Further details can be
found in the annual report for this contract (June 1979). Very high
resolution imaging systems, regardless of wavelength, require large
apertures with high resolution, low side lobe level, and high gain.
These apertures are often considered to be technically and economically
infeasible. We investigated the efficacy of using very sparse arrays
of randomly placed small antenna elements in imaging systems. The
properties of these arrays are established in antenna theory. What
we have done is to make the first demonstration of their application
in imaging systems. Computer simulation studies were made for coher-
ent, partially coherent, and incoherent imaging. These were done
using various conditions, including variable signal-to-noise ratio
and phase aberration, but with monochromatic illumination. We showed
that, for incoherent imaging, a large degree of thinning down to 6%
of the number of full array elements (4096) produces image quality

comparable to that produced by the full array. For broad-band

13
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polychromatic incoherent imaging, even larger degrees of thinning,

down to 3%, were similarly effective. The fracional degree of thinning
allowable for incoherent imaging is in principle, inversely propor-
tional to the square root of the number of elements in the full array,
which is equivalent to the number of elements resolved in the full
array. The arrays, which are easy to design, degrade gracefully

when large fractions of the elements are removed. For coherent

imaging applications, random arrays do not offer significant advantages
over full arrays.

The body of this report describes the results of the last
contract year's work on the ME estimation method. Both the theory and
application are described along with the results of computer simula-
tions on one- and two-dimensional images. The meaning and nature of
the ME method is discussed in Section 2, where the meaning of entropy
in this problem is clarified. A generalization is also presented
that reconciles the two contending forms of entropy seen in the ME
literature by showing them to be special limiting cases of a more
general entropy, based on quantum statistics. The actual physical
nature of the source and measurement apparatus determines the appro-
priate limiting form of entropy. The commonly used information
theoretic entropy is shown to be one such limiting form.

An analogy is made between the ME problem and the free-energy
minimization problem, familiar in statistical mechanics. This
analogy allows fluctuation noise and signal~to-noise concepts to be
introduced naturally into the theory and practice of the method via
an effective noise temperature, if the noise or signal-to-noise is
known a priori by independent measurement from an ensemble of
measurements.,

There is a closed-form solution to the ME problem in one dimension
for the case of Gaussian statistics. In that situation, matrix
inversion for image signals of small extent or recursion for larger

ones can readily be used to solve the problem. No closed-form

14
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solution exists for any other case, and iterative algorithms must be
employed in digital computations. We studied two methods: the natural-
iteration method, which guarantees convergence, and the much faster
Newton-Ralphson method which does not. Examples of one- and two-
dimensional and computer simulations of restoration and superresolution
are given in Section 4. No approximation was needcd for nonseparable
two-dimensional point-spread functions.

A question rarely asked in ME estimation work is what degrec
of confidence should be ascribed to the estimates. We develop in
Section 5 a general method for the calculation of the degree of confi-
dence in the ME estimates, suitable for two dimensions and not
restricted to Gaussian, independent statistics. This method is
applied to a set of ME estimates consisting of estimated objects,
all differing in the degree of superresolution and differing further
in the degree of noise assumed. The multidimensional (49 dimensional
in our example) nature of the results makes a two-dimensional graphical
representation of the results difficult, but we have chosen to
attempt it in order to supplement a purely algebraic statement.

As a corollary of our study and understanding of the entropy
in the ME method, we noticed that many authors, while recognizing
the importance of the Poisson statistical regime for imaging and
communications, have incorrectly evaluated the probabilities and
channel capacities for the Poisson distribution. They incorrectly

used the wrong entropy or information expression for this case.
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SECTION 2

MAXIMUM ENTROPY ESTIMATION: THE GENERAL POINT OF VIEW

Maximum Entropy has been used in various forms and for various
ends in recent years. Applications ranging, for example, from radar
filter formation to beam forming, from seismic spectral estimation,
to astronomical imaging and even to economic forecasting, have all
been enriched by this general technique. The particular techniques
and philosophical points of view vary widely among the several
disciplines, each working independently and publishing in specialized
journals.

The interpretation we present, which we believe to be the
most general and which includes others as special more limited cases,
is based on two considerations. Any image, measured as signal,
pattern, or spectrum, whatever the variables represent, is a
necessarily degraded version of the true object. It is necessarily
degraded because a real measurement system has limited bandwidth
or finite point impulse response function, because the time sample is
finite, and possibly because the measurements were undersampled.
Furthermore, noise cannot be ignored.

Many different possible object patterns (whatever the object
variables represent) all differ in detail, but can produce the same
measured image pattern. This ambiguity can be resolved by applying
the ME method. 1In our interpretation, the second consideration is
that a probability is assigned to each possible pattern and the
most probable pattern is chosen as the estimated or restored object.
Patterns are assigned probabilities based on the physics and statistics
of the immediate problem. The entropy is understood to mean the
logarithm of the probability. So to find a maximum of the entropy
is to find a maximum of the probability.

From this point of view ME is a method to estimate the true

object (or its transform) by maximizing its entropy subject to the

17
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measured image data constraints. In the next section we develop this
idea in an analogy between ME and the well known, and much practiced
statistical mechanical principle of the minimization of the free energy
and derive some useful benefits from the analogy.

Here, some comments are in order about a much repeated "

principle
of maximum entropy' put forward by Jaynes which is often used to justify
the ME method. 1In the particular form it is often quoted in ME,
exploiting the relationship between information and entropy, it

states that the ME estimate is the least prejudiced one bringing no
additional information from tacit structures and assumptions. Any

such implicit features would decrease the entropy from its maximum.

We do not need to employ a new principle to formulate the ME problem,
we maximize the probability and, following Boltzmann, we identify the
logarithm of probability with the entropy.

An information theoretic point of view can enrich and sharpen
our understanding of the relationship between the observer and the
observed, the knower and the known, but it has sometimes been subject
to misuse and misunderstanding. The information theoretic entropy of
Shannon, -f log f, is often employed inappropriately. This form is
appropriate only when there is no underlying a priori probability
distribution departing from an equal a priori weighting. For example,
it would be appropriate for the ubiquitous gaussian case but not so
for the poisson case.

These considerations regarding the entropy expression have been
developed at length in our paper "Maximum Entropy Image Restoration:

1. The Entropy Expression,' published in the Journal of the Optical
Society of America and reprinted in Appendix A. The interested
reader is referred there for a detailed exposition; only a summary is
given here.

There are two schools employing two different forms of entropy
in the ME problems they are solving. We call them the "log B" and

"-B log B" schools, where B is the local or instantaneous brightness,

18
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power, intensitv, or their spectral counterparts, We derive these
two expression:s as limiting cases of a more general entropy forumula
based on the underlying propertivs and statistics of the physical
source and of the measurement process., In the case of photon or
clectromagnetic signaling or imaging, the Bose-Einstein statistics
and in the case of electrons, the Fermi-Dirac statistics are
emploved. The n quantum mechanical particles comprising the bright-
ness are distributed over z degrees vt freedom as calcualted by
these statistics. The number of degreces of freedom is a function
of both the source and the measurement and estimation process. It
can be understood in phase space in terms of the ratio of the sizes
of the detection volume to the coherence volume of the particles.
The number of degrees of freedom is an extension of the familiar
idea of the time~bandwidth product to include the conjugate variables
of space-reciprocal space as well. The entropy to be maximized is
the logarithm of the probability as given by the physical statistics
of the problem, following the original meaning of entropy as given by
Boltzmann and Planck. The entropies log B and ~B log B result in the
limit n>>z >>]1 and n<< z, respectively. When n is interpreced as an
average n over an ensemble, we find in addition the log B expression
when n>>z = 1., The Burg form used in spectral estimation, for
example, is log B. The distribution function for this case is the expo-
nential in intensity, or Gaussian in complex amplitude. Shannon's
entropy expression is shown to be, in the same way, a special case
of the more general result and is appropriate for his special interest,
namely, the z = 1 Gaussian complex amplitude case of equal a priori
probabilities.

We show in Figure 1, by way of illustrating the n/z concept with
a familiar example, a plot of the wavelength-temperature dependence
of a blackbndy for given average number of photons per mode (or per

degree of freedom) n/z.
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Figure 1. Wavelength-temperature dependence of a blackbody
for given average numbers of photons per mode
(or per degree of freedom), n/z.

The ME method, in summary, may be viewed as a nonlinear inversion
or deconvolution method for estimation from partial and noisy data.
It can be used to extrapolate or interpolate in the spaces of the
measured variables or their conjugates, as in Fourier transform
space,  Since it can achieve an inversion beyond the algebraically
allowable spatial, temporal, or spectral limit of the measured data,
it can be said to produce a superresolution., In the next sections
we describe our method of solution, describe a useful thermodynamic
analogy, and give some examples in one and two dimensions, Finally,

we address the question of the degree of confidence in the estimates,
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SECTION 3
THE ME METHOD AND ITS INTERPRETATION

In this section we describe our particular formulation of the
ME method and present a useful thermodynamic interpretation in terms
of the free energy. This interpretation permits us to deal with the
problem of fluctuations or noise in a natural way. The Burg method
and the relationship of ME to the Bavesian point of view is

discussed.

A. FORMULATION OF THE ME PROBLEM

We begin with a set of measurement data in one or more dimensions,
a known noise or signal-to-noise ratio (S$/N), a known instrumental
and transmission path point-spread-function for measured spatial
variables, and impulse response function for measured temporal
variables. 1If we are measuring or estimating spectra in the
reciprocal or conjugate space of spatial or temporal frequency, we
must then know the detailed behavior of the band-limited transfer
function or time-limited sampling function of the instruments. The
goal of the method will be to estimate a finer resolution version of
the original measurement datum (or its spectra), or equivalently, an
extrapolated version of the original measurement datum (or its spectra.)
An example from image estimation will help to illustrate these ideas.
Suppose an unknown object {0b} convoluted ® with a known
instrumental point spread function (PSF) is observed as an image

signal {1} .

We may write

{obt ® PSF = {1} . (1)
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Naturally, there are fewer independent variables or resolution
elements (space-spatial frequency product elements) in the image
than there are potentially in the object. There are many possible
objects, that could produce the same image. There is a many-to-one
mapping of the variables that might describe the object to the
variables that describe the image signal. One ME problem is to
invert Eq. 1 to get an estimate of the object {dL} with some desired

PN

degree of resolution or superresolution. The carrot symbol denotes
estimates.

Inversion is possible using linear methods, but only up to the
band limit, resolution limit, or, the uncertainty limit. The
problem is that of inverting singular matrices or dividing by
zeros, or near zeros. All linear methods are basically equivalent in
sharing this difficulty.

The classical analysis by Slepian and Pollock showed that at
and beyond the resolution or uncertainty limit the eigenvalues fall
rapidly to neglible near-zero values. Thus, any finite noise, whether
physical noise in the signal or numerical noise in the digital computer,
renders superresolution impossible by linear inversion schemes. As
a nonlinear estimate method, ME diminishes these difficulties. Like
other nonlinear methods, such as the iterative method of constrained
positivity, ME can achieve superresolution estimates in the presence
of noise. (We incorporate a positivity condition in our ME formalism
in a natural non ad hoc way.)

Only the one-dimensional ME problem for the case of Gaussian statis-
tics has a closed-form solution (discovered by Burg). This problem can
be solved by direct matrix inversion, although recursion schemes are
usually employed for speed and economy of calculation. In higher dimen-
sional problems, such as two-dimensional pictorial imaging or synthetic
aperture radar, no closed-form solution exists, Furthermore, for anv
statistics other than Gaussian, no closed-form solution exists., For

example, for Poisson statistics, the problem must be solved numerically.

(%7
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Our formulation of the ME problem is to assign a probability to each
possible object, based on the physical statistics of the problem
at hand, and choose the most probable object as the estimate. 1In
practice, we do not enumerate the probability for each object that
agrees with the constraints, but determine the most probable object
by the methods of analysis. But, in principle, it could be done
that way.

According to Boltzmann's identification of entropy S and
probability P (see Appendix A) P being the normalized number of ways

something can occur, the degeneracy

S =log P . (2)
We see that seeking the maximum probability object estimate '

is equivalent to seeking the maximum constrained entropy:

P = e+S constrained . (3) L
We write the constraint in the form of the squared difference between
the given measured data and the estimate to be found. By subtraction, *
the constraint compares the calculated estimate with the original
measured data. Before comparison, the two quantities must be in, or !

be transformed into, the same space and compared on the same support

elements. For example, we may compare the superresolved object

estimated on a fine mesh with the coarser mesh measured image by :
convoluting the estimate with the known point-spread function of

the measurement technique. This procedure reduces the number of

independent coordinates in the estimate and places it on the same
coargse mesh of the image for comparison. Thus, the estimate object

is degraded by the same measurement techniques that produced the actual
image. This derived "image' is compared with the actual image in the

constraint term. Continuing our example, we write




E = %({I} - %PSFi’k(t) {Ob})2 . (4)

In the same way, we can constrain the estimated object to agree with
an image measured in Fourier transform space. This situation would
arise, for example, in the detection of the partial coherence visi-
bility function as is done in radio telescopy. Here we would compare
the transform of the estimated object, degraded by the transfer or
filter function (the modulation transfer function (MTF)) of the
measurement technique, with the actual measured image transform.
Again, the estimated object is degraded in the same fashion as the

actual image was. We would then have the constraint
. 2
E = E ({Ik} - ? [Fourier Transform (i,k) {Obi}] MTFk) (5)

where {I} and {Ob} are in the reciprocal spaces of spatial frequency
(fx) and space (x), respectively. Other permutations of the trans-

form relation are also possible in the constraint term. This constraint
term may be viewed as an error term, or a noise or error-tolerant

term. Wernicke and D'Addaria,1 utilized it in their formulation of

the ME problem with an arbitrarily chosen multiplier that was not
clearly interpreted. The constrained entropy to be maximized may be

written as

~ ~ -~

s({ob}) = s({ob}l) - BE({Ob,I} ) , (6)
constrained

where B 1s a Lagrange multiplier that is chosen so that the constant of
Eq. (4) is satisfied. The multiplier B determines the weight, or
importance, of the constraint. 1In general we can make B dependent on

i and multiply B1 inside of Ei in Eq. (4); however, for simplicity we
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use a constant Bi = B. The constraint term E may be viewes as an energy
term since it is a quadratic form; this is in analogy to physical systems
which often have quadratic potential and kinetic energies. We chose
this quadratic form to emphasize this analogy for a useful interpreta-
tion of the multiplier, and also for technical and mathematical reasons.
Because we want the energy to become small in our extremum problem,
any even function, such as the absolute value or En, where n is an
integer, would do. But the quadratic form makes an algebraic and
algorithmic simplification.

Maximizing the constrained entropy is the same as minimizing its

negative, and we minimize a function which we call BF:
BF = PE -~ S . (N

Equation 3 for the probability of the object may now be written

P=ce . (8)

Since maximizing the probability is the same as maximizing its
monotonic mapping by the logarithm, we minimize BF (Eq. 7)

directly:
MIN BF{Ob} = MIN(BE-3) = MIN [g({1} - PSF @ obn? - s]. (9

To illustrate more explicitly, we can choose an explicit form for

the entropy such as S = + log {db} (suitable for Gaussian amplitude
statistics), or S = -{d%}log{d%}(suitable for Poisson statistics as
we show in Appendix B). The convolutional PSF might be Gaussian or

i 2 . .
(§l%—5) , depending on the details of the measurement conditions.

2 2
(We choose the (sin"x)/x” form in our later examples.)




To minimize Eq. (2), we set the partial derivatives to zero,
s (10)

and solve for {Ob}.

These equations can be solved iteratively by a variety of techniques.
2

We have used a "natural iteration technique'”™ developed by Kikuchi,

which guarantees convergence irrespective of the initial guess, and

the Newton-Raphson techniquej.

B. A THERMODYNAMIC ANALOGY

When we examine Eq. 7, we note that it has the form of the
function that is minimized in the canonical ensemble treatment of
statistical mechanics. Using this analogy, we can go one step

further and call F (defined in Eq. 7) the free energy. In our

interpretation, we identify the constraint energy, Eq 4 or 5,
with the internal energy of the system, and B with 1/T, the
reciprocal temperature. Therefore, in our formulation, of the ME
problem should really be called a Minimum-Free-Energy (MFE) problem.
One may call the entire expression, Eq 7, entropy or free energy,
depending on whether one views the system as closed or open, and
whether the problem is viewed from the microcannonical or cannonical
point of view. In any case, the same function is to be minimized.
The important point is that in either case the multiplier 8 can be
associated with the concept of temperature and therefore fluctuation
or noise as we shall see below,

This analogy immediately indicates what value B should take

to satisfy the constraints. From statistical mechanics we know

that the system takes the state of the lowest energy at T = 0.

This means that the value of B that satisfies the constraint is
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infinity. When ® = 0 (i.e., T»), the entropy predominates in Fq 7;
thus the object viables correspond to those values that maximize §
without the constraints, thereby producing a flat featureless
distribution for the object. As f increases, the F term increases
its contribution and is not at its lowest zero value,

Analogy with the statistical mechanics enables us to use the

relation

LA (1

a1
fhis retation can be used as a check of numerical computation.
Lquation 11 can be used as follows. It we can expand ¥ near T = 0

(-=) as

. o .
b~b0-lbl—112.., (12)
then
S =~ —£ o 4 oomr+ (1)
- AT 1 2 e
and
. 2 ,
E=F+TS=F +T¥F+. ... (1)
O 2

Because we know ¥ = 0 at T = 0, Eq. 14 leads to Fo = Q.
Equation 13 shows that F is the residual entropy, i.e., the entropy
value at T = 0, The behavior of F and S near T = 0 is shown in

Figure 2.
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Figure 2. Behavior of free energy and entropy at low temperatures.
(a) Normal behavior; (b) Apparent behavior in our form-
ulation due to suppression of a large constant positive
entropy term.

For the region of B we used in one of our examples, the

expansion (Eq. 12) does not hold exactly, and the relation was

F=-T F (15)

with a small a. In this region, for example, it was numerically

verified that




Aot~ gy
. e

(14a) T°F

45]
[l

1
(16)

and

1+a

hold with a = 0.05. The relations in Eq 16 are derived from the

thermodynamic relations, Eq. 11 and 14.

C. FLUCTUATIONS OR NOISE

Our thermodynamic analogy gives a further insight into the
problem of the meaning of the energy constraint term and its
multiplyer B. Wernecke and D'Addario,l noted that if the measured

data values in the constraint are independent zero mean, random

variables with known a priori variances of, the constraint E could
be written
M Estimated, - Mea d 2
E=3 g _ easure i) =M , (17
i oi

the equality holding provided M is large. The computed trial

solutions for various multiplyers B, to find the one that permits

Eq. 17 to be satisfied with "sufficient' accuracy. They note that

it might not be possible to satisfy Eq. 17 no matter how large B if

the measurements are too noisy or the variances {cg} are assumed to

be unrealistically small. They give an estimate for a trial guess

for 8 from the case of a single measurement of the total object
intensity my by setting JF/30b = 0 (Eq. 10), and setting the difference

between measured and estimated values equal to 01,
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(18)

which varies from zero to a maximum of one-half, They increase B to
satisfy "increasing accuracy" in Eq. 17, but no further rule or
interpretation is given.

Gull and Daniell,4 seemingly unaware or Wernecke and D'Addario's
prior workl, similarly assume the data to have Gaussian errors and
note that then the term E (Eq. 17) is a x2 distributed statistic and
that the expected value of xz is equal to the number of data values M.
They automatically increase 8 in their iterative solution until this
equality is achieved. No interpretation of B is offered there to
relate it explicitly to the noise,

In thermodynamics the fluctuation of the energy in a canonical

ensemble is given by
SE- =k TC, =kee ° (19)

where we will, in our analogy, put Boltzmann's constant k = 1, The

specific heat C_ is given by

\'Y
_B8E _ 385
C. = T T . (20)

These two relations are general and do not depend on the assumption
of Gaussian independent error or noise fluctuation statistics, or
the validity of the equipartitioning of energy for the problem at
hand.
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1f equipartition were to hold for the ME problem, we would have a
simple theory for the specific heat and the fluctuations. Equipartition
would indicate that the fluctuation or noise power is distributed uni-
formly among all the pixels, or mesh points, with 1/(28) in each pixel,
each pixel being a degree of freedom in our present equipartition
analogy. Equipartition would hold if the quadratic energy term were

the only factor in the probability or free energy expression (Eq. 8):

M
p=e % (44) , (21)

where A is the difference between estimate and observation. We could

set
2
BZ(Ai) =1 (22)

and have a simple relationship between f and the noise by relating Ai
to the noise. We would employ a single 8 for simplicity rather than

separate multipliers Bi. But the nontrivial entropy S in Eq. 8 spoils
the relation (Eq. 21) for equipartioning except for special asymptotic

limiting cases:

p=e® Z(3) 2. et (23)

In general, we must numerically calculate CV’ which is B dependent,
and then use Eq. 19 to relate the value of B to the fluctuation or noise
TE. The numerical calculations are required because the series expan-
sions do not hold exactly as we pointed out in Eq. 15 and we have not
yet developed a theory of the specific heat for this problem. We
emphasize that the relation, Eq. 19, does not depend on the noise being

of the nature of Gaussian-independent fluctuations, but is very general.
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Some comments may clarify the meaning of the energy fluctuation
z;;r (Eq. 19). 1t is important to note that although the individual terms
within the energy constraint expression, Eqs. 4 and 5, ordinarily have
the meaning of physical energy (power, brightness, intensity, etc., or
their spectral counterparts), we do not refer to these physical
energies in the phrase "enmergy-fluctuation." Rather, it is our artifi-
cial analogy with the ubiquitous quadratic energy form such as occurs
in the simple harmonic oscillator that permits us to call the entire
constraint term an "energy' in our analogy. It is the fluctuation of
of the entire term that is determined by Eq. 19.

If we write the measured quantities m and the estimated quanti-

ties on the same grid as n, we may write Eq. 19 as follows. First we

k

write OE noting that averages are done on n, but not on the given m:

k

SE = E-E = Z [(nk - mk)z - WJ (24)

We then must square and average to get

6E2 = {E [nk - nk2 -2 (nk - ;k) mk] 12 . (25)
k

This complicated collection of higher moments can be simplified when
the statistical distribution of the estimated object (n) is known. For
example, if it is known to be negative-binomially distributed (see

Appendix B) the second moment may be calculated as

Tl? -5 (1+5) | @

32




Higher moments for this and other distributions may thus be calculated
separately to simplify Eq. 24. Arbitrary definitions for the fluctua-
tion such as

587

O

“J

or the root-mean-square fluctuation

(27)

;ﬂii
EZ
may be usefully employed as well to simplify the results.

D. THE BURG METHOD

The Burg, or one-dimensional Gaussian statistics ME method and
related algorithms has been shown to be equivalent to an all-pole net-
work model. These ideas have inflitrated estimation theory from the
discipline of control theory. Statistics other than Gaussian do not
necessarily produce all-pole solutions, There are those who hold that
if a process does not have such a network model representation, there
is no physical reality involved. (See Appendix B.)

In the one-dimensional Gaussian-Burg problem, as generally practiced,
a fixed nu.oer of autocorrelations or, alternatively, lags in the
temporal data string is chosen; this number is also the number of poles
that are determined in the spectrum. The location and magnitude of
these poles determine the position and strengths of the spectral peaks.
Where they fall, how close they are to each other, and how strong they
are, are all the result of the calculation. In our formulation of the
Caussian problem we choose the fineness of the mesh upon which the
vstimates are constructed and upon which they are constrained to stand.

Only the strength of the estimates at these mesh points is calculated.
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E. BAYESIAN INTERPRETATION OF THE ME METHOD

The Bayesian approach may be viewed as a method for computing the
conditional probability or probability distribution of a state of nature
{(or a cause) given the measured data (or an effect). If we write PA(B)
for the conditional probability or probability distribution of B given

A, then Bayes' theorem may be written

P(B) PB(A)
Fa® T m (28
In the ME problem we seek to determine the most probable object
given an image. That is, the maximum of PI(Ob),
P(Ob) P . (1)
ob (29)

PI (Ob) = 5y

Now the probability distribution of images given an object Pob(I) is
determined by the instrumental and transmission channel characteristics,
including noise, by the PSF for example. The probability distribution
of the images P(Il) is a constant with respect to the maximization over
objects., Wernecke and D'Addariol questioned the possible relationship
between the Bayesian or maximum a posteori probability method (MAP) and
ME, but commented that P(ob) was a stumbling block and that to use MAP
one must make a model for the statistics of the object P(ob). From our
point of view, the distribution P(Ob) is given by the physical statistics
of the problem. For example for photon signals, the Bose-Einstein
statistics apply (as discussed in Appendix B). With these identifica-
tions and interpretations, the maximization of PI(Ob) for the most
probable object done in the ME method may be viewed as a maximization of

Bayes' equation, a MAP method.
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SECTION 4

EXAMPLES OF ME ESTIMATION

We illustrate the ME method with some examples of one-~ and two-
dimensional problems and modeling both Gaussian and Poisson statistics.
Although we conceived of these problems as photon imaging problems to
address the issue of imaging with thin, sparse arrays, it will be obvious
that by changing the names and meanings of the variables a wider variety

of problems is implicitly included.

A. ONE-DIMENSIONAL EXAMPLE

In the first example, a one-dimensional photon signal is received
by an array of antennas or apertures. The signal is supposedly known
to be the far-field radiation pattern of the unknown object and is the 4
mutual or partial coherence function; i.e., by the Zernike-~Van Cittert ti
theorem, it is closely the Fourier transform of the unknown intensity
distribution pattern of the object. The array samples a small discrete
subset of object transform values and the ME method estimates the object.
The constraint energy term E in this example takes the squared difference
between the measured values and the estimated K transform values, cal-
culated from the estimated normalized object intensities {ﬁ}} on a fine

mesh labeled i (1 £ i 5 i max):

k . 2
E {pAi} = 2 (2 p; cos (Zﬂf(k) . xi) - Hkmeasured) (30)

k=1 {i}

(k)

The spatial frequencies f in the incoherent case are a measure of the
separation of pairs of elements in the array. The number of pairs K
will be less than the number of mesh points i max, so we will be asking
for a superresolution. We use a cosine transform here and create an
artificial extension of the object to make an even tunction. This was

done for convenience.
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Notice that we are constraining in transform space but estimating
{ﬁ;} in object space in this example. An additional constraint is
placed on the overall object intensity so we will estimate only the

relative shape of the object,
Epi=l . (31)

The free energy times B becomes
s = BE(p.} + D, (ptnp, - b ) +1 4 (1- Fp) . 6D
i i

This function is to be minimized with the Lagrange multipliers B and X

for the two constraints. The minimum is obtained when tv
. 3E {p.}
3
—%F=2np_-)\+8———-,\ 1 <0 (33)
P i .
i op.

1

is satisfied for all ;. This simultaneous set of equations to be solved
for py is treated by a special kind of iteration scheme.

We can guarantee the desired positivity of the {éi} by writing it
as é oY in our formulation. This is a natural way that does not
simply reject or set to zero negative values as sometimes reported in
other nonlinear schemes.

In this example we estimate 51 on a support of imax = 50 points.

We observe the first seven of fifty spatial frequencies. In our simula-
tion this would represent a potential seven-fold superresolution at

large values of 8 if the data allow it. To further illustrate the
possibilities of the method, the sixth of these seven spatial frequency
components was suppressed, simulating a particular sparse array. The
diffraction, band limited, or resolution limited object estimate (further
limited by the missing component) that was obtained by Fourier trans-

formation of the six components of given measured image data, is shown

in Figure 3.

36




0.120 10435- 3
{ I 1 I T T
0105 ]
0080 _
0.07% |- -
0060 [— i L
0.045 —
0030 _
0.015 - |
0 L | l l 1 |
1 8 15 22 29 36 43 50
J
Figure 3. The diffraction-limited object estimate (Fourier transform of

the observed or measured image data) further degraded by one
missing Fourier component.
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A series of fifty dimensional estimates for the objects {pi} is

shown in Figure 4 for seven different values of B ranging from one-half
to 120. It can be seen that smaller values of B, representing a lower
known confidence in the accuracy of the data or equivalent by a lower
S/N, produce a smoother, flatter estimate, while large values of B pro-~
duce sharper, more detailed estimates. The diffraction object estimate
falls somewhere between the curves for B = 1/2 and B = 1, but there

is no curve of definite 8 that can reproduce the diffraction pattern.
This behavior can be seen more clearly in Figure 5. A curious behavior
can be noted near the peak below J = 15 in Figure 4. The B = 120
estimate takes a slightly lower peak value and the entire peak struc-
ture moves slightly to the left. Why this is a free energetically
favorable situation is not obvious. This example is not a severe test
of the ME method as there is not much structural detail at the fineness
of the support of 50 points. The next example will show diffraction-

limited behavior more explicitly.

B. TWO-DIMENSIONAL EXAMPLES

In the two-dimensional example we now turn to, the energy constraint
is written entirely in the spaces of the object and the image, unlike
the previous example where it was written in the transform spaces, of
object and image. In these examples we use the Log B formulation of
ME appropriate for Gaussian amplitude or exponential intensity statistics.
We may imagine, in these examples, that the measured data are given
directly as an image in real space or that it has been transformed to
image space from measurements in Fourier space. The form of the con-
straint was described in Eq. 2. We chose a convolutional point spread

function of the measurement to be of the form

sin2 (x—x‘) sin2 (y-y')

(x) T )
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Figure 4. A family of ME object estimates for several values of the
parameter R, compared with the diffraction object
estimate,

39




1043516

0.075 T T | T T T

0.060 —

0045 |-
P
0.030 [~
/
/ L/
0.015 — j{. ° .\0-...13..:.-"-/.2----".’} .'.

/

hao

/7 ~
0 | | 1 | | !
0 8 15 22 29 36 43
J
Figure 5. There is no ME object estimate for any 8 that can

reproduce the diffraction object estimate,.
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representing diffraction spreading by a limiting square aperture. The

scale of diffraction spreading was chosen to be a factor of four in

cach dimension. That is, the number of independent variables needed to
completely describe the image was 4 x 4 = 16 times less than required to
describe the object from which it was mapped. The image can be com-
pletely and uniquely represented on a grid 4 x 4 times coarser than the
object.

In FTigure 6 we show a two-dimensional test object of two isolated
spikes éupported on single-grid locations separated by three empty grid
cells. Note that they are on a repeat period of four grid cells. The
heights of the spikes are in the ratio of 255 to 128, and the base of
the figure is unit height. The 4 x 4 times degraded diffraction-
limited image is shown in Figure 7 on an appropriately reduced coarse
support grid. If the two spikes of the object in Figure 6 were of the
same height, then the image in Figure 7 would be said to have '"resolved"
the spikes according to Rayleigh's criterion, but as the spikes were of
different heights, they are just unresolved. For convenience, both of
visualization and of computation, the image is redrawn on Lhe same fine
grid of the object in Figure 8. These interpolated image values are
redundant and contain no additional information. They are uniquely
determined by the values on the coarse grid in Figure 7.

The ME estimate of the object was made on a 20 x 20 section of
this image on the fine grid so the degree of superresolution of the
image was a factor of 4 x 4. The result for the case B = 104 is shown
in Figure 9. The two peaks are clearly resolved and some widening at
their bases can be seen.

The iteration process was terminated by testing for when the sum
of the absolute differences between the estimated values in two suc-
cessive iterations was less than or equal to 10_5, a number chosen
arbitrarily. Some arbitrary choice is needed to terminate the process
of ever diminishing returns. At this test value the peak heights were
254 and 96. In the natural iteration method? used in these examples,

the free energy necessarily decreases monotonically with iteration for
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Figure 7. Just unresolved image of the test object of
Figure 6.
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all B8 values. The test described above was found to decrease
exponentially but only for B below a certain value, depending on the
details of the problem. Above that B value, the convergence was
impractically slow and erratic. The Newton-Raphson method does not
guarantee convergence from an arbitrary initial guess and also fails to
converge for values of B greater than a certain maximum value.

The second two~dimensional example we present is similar to the
previous one, except that here the image is derived from the test
object, shown in Figure 10, whose two spikes are at half the previous
separation, i.e., at half the resolution separation of the aperture.

The unresolved image is shown in Figure 11 on the appropriate coarse

grid. Figure 12 shows the fine mesh representation of that image. The

ME estimate of the object is shown in Figure 13 for B = 105. The

unresolved peaks in the image are now clearly resolved and the peak

values are 255 and 126. A saddle point of height 40 sits between the

peaks, and there is a slight width at their base. The displacement of '
the peaks in this figure is merely a result of an improper plotting pro-

gram instruction and should be ignored. .

The last two-dimensional example we present is constructed from
binary black and white alphabetical object shown in Figure 14(a), con-
structed on a 20 x 20 grid. The four by four-fold diffraction image
is seen in Figure 14(b). The 400-dimensional ME estimate of the object
is shown in Figure 14(c) for the case of B = 107. The convergence was
so slow and erratic at this high value of B that Figure 14(c) shows
rather unconverged results; that is, the fluctuations between successive
iterations were still large. However, the superresolution was achieved.
But the gray level or intensity values in the ME estimate are still

uncertain in Figure 14(c).
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Figure 11.

10435-13

Unresolved image of the test object of Figure 10.

48




10435- 8

X X
00..300
CON
QORI
20906
9000000004
900060004
0.0.0.0.0.6.0¢
COOOO0
OO
QOKEKS
e

"9
000

N\

»
000 (X

S
-,

1.

Fine mesh representation of the image in figure

Figure 12.

49




—— ey = I

10435--9

P
E

¢
¢

s
X
&

¢

¢

s
%

&
&

(XXXXXXXX;
COKKAXXXXN

e
LR
a&x&:
X
K

o
o
X

S

(XX,
(XXX
(XXX
K559

¢

Q)

QK
9.9.9.9.9
9,9.9.9.9
KKK

%

¢

X
X
g

R0l etete!

50

ME object estimate of the unresolved
image of Figure 11 (or Figure 12).

Figure 13,




10435 11

Pienre Dataro o B ,

Fivure Lachin DIttt ion bimind
Pmae .,

{H)

Fiyuve Lato. ST




SECTION 5

THE ME CONFIDENCE OR RELIABILITY ESTIMATE

When an object is estimated using the ME method, the question
naturally arises concerning how much confidence is to be placed in the
estimate. In this section we describe the theoretical formulation for
the calculation of the confidence, and we give some examples for a

variety of measurement conditions.

A, THE THEORETICAL FORMULATION

The ME procedure finds the one pattern which maximizes the proba-
bility P of different patterns appearing as the object. The estimated
pattern object' {Ob} designated by its set of normalized variables
{pi(o)}. The variables {pi} are constrained to obey a set of subsidiary

conditions.

Near the maximum of the probability P{pi(o)},P behaves quadratically

and we may assume it behaves as a multivariate Gaussian distribution.

We write symbolically,

(0)y 2
(o) 1{Pi™Py ° )
P{pi} = P{pi } exp S\ ‘ , (34)

i

where the {Oi} are the standard deviations of the estimate to be
calculated. This is illustrated in Figure 15 as though it were a
one-dimensional problem.

We will ultimately use the calculated {o,} in determining the

(@)

A small o, referring to

confidence of the ME estimated values {pi
(o)

Figure 15, means that only the values of {p} nearly equal to ip
have a high probability P{p}; thus we can rely on the estimate more
than if the {o} were large. More conventionally, we .ould normalize
the probability to unit integrated volume ("area" in Figure 15) and
consider it to be a probability density function. Then at %p(o) ‘le0},

the integrated area (twice the shaded area in Figure 15) would represent
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Figure 15. Schematic one-dimensional illustration of the assumed
Gaussian behavior of P near its maximum. If P is
normalized it becomes the probability density
function and the integrated "area" becomes the
cumulative probability.

(o),

the probability that Ob{p} lies within the range {p +0}. In one

dimension rhe probability would be 0.68. We could say in that case

p(o) +5 has a "confidence coefficient"

that the "confidence interval"
of 687 and that the '"confidence limits' we set are +1.0,

Our problem differs from the usual statistical problem in several
respects. In our problem both the mean, or more correctly, the most
probable {po}, are estimated as parameters and not measured as a
stochastic variable, and {c} are also calculated rather than measured.
Furthermore we derive the actual probability distribution function P or

density function P_ from the ME theoretical formulation, although we

D
approximate it by a Gaussian near its maximum. We have typically only

one (multidimensional) measurement from which we calculate both a




(multidimensional) set of {po} and one of {uv} along with the probability
distribution of {p} as well. We could determine the exact shape of the
multivariate function P{p} and we would not have to approximate it near
the maximum by a multivariate Gaussian, but the computational problem

is too large to make that option practical.

The schematic quasi one-dimensional drawing of Figure 15 can be
somewhat misleading, so we show in Figure 16 a two-dimensional Gaussian
distribution. The two-dimensional example is easily interpreted
geometrically and is readilv generalizable to the multidimensional case

of interest in this problem. In two dimensions,

(o)

_ (o) 1
P(PI:P?_) = P(Pl on ) exp ‘7 -

(35)

2 2
(0) (o) (o) (o) 1
P, p P,-P P,-P P,-P
( 1Py )-zp 17P1 PPy +( 27P2 ) '
01 g (9] 02 ;

1 2
where p is the correlation parameter that characterizes the stochastic
dependence between Py and Py- Except when p = 0, the axes of the
contour ellipses are not parallel to the coordinate system Pys Py and
the length of the axes of the ellipses depend on both {o} and ..
Equation 35 can be normalized so that its two-dimensional integral is

unity to make a probability-density function:

PyPysPy) = —————— exp fas in (35) 1 . (36)
2nﬂln2 1—02

Curves of equal probability on planes parallel to the PPy plane are
ellipses on the P surface of Figure 16, as can be seen f{rom the
exponent of Eq. 35. These ellipses may be projected onto the Pysby

plane as shown in Figure 17.







Figure 17.

p2(0)

P2

Concentration ellipses of a
bivariate normal density.
These are contours of equal
probability P projected on
the PP, plane.
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The contour ellipses corresponding to Eq. 36 are of the form

"
<

2
py-p O p-p, b, (O
5 .
12 ( : ‘l ) - g ”1 .2 — +( 2 2) = ¢%, @GN
1-, 1 ’ 2 °2
where C is a constant. It is always possible to make a linear

orthogonal transformation of the variables to a new set of variables

which are stochastically independent and normally distributed. In
etfect, it is a rigid rotation of the coordinates to a new system where
the axes of the ellipse lie along the new coordinate axes Qg (see
Figure 17). With the new correlation coefficient equal to zero, the

new variances wq are proportional to the axis lengths of the ellipse.

The new equation of (the same) density function PD (36) can then

be written

q 2 q 2
1 1 1 2
D) T T S e |t ) (38)
1 72 9 q,

and the contour ellipses corresponding to those of Eq. 37 can be written

: - (39)
5+ C .

This form is the sum of squares of two stochastically independent
2 . . . . -
variables and, therefore, has a y  distribution with two degrees of

freedom. The probability that (ql,qz) is inside the ellipse (Eq. 39)
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given by C2, is therefore equal to the P-~fractal of the cumulative

x% distribution function for two degrees of freedom f,

. 2 . 2
1 2 2
—t—-= Xp (f=2) . (40)
g g
9 a2

Equation 39 is exactly the same ellipse as before (Eq. 37), which was
expressed in terms of the correlated variables p. The onlv purpose
of the transformation here is to show the equivalence as a sum of
squares of independent variables. But there are other uses ot the
transformation which we will describe below.

For three variables, (pl, Pos p3), the trivariate CGaussian distri-
bution p cannot be drawn, but we show in Figure 18 one three~dimensional
concentration ellipsoid represented in its rotated coordinates qu-.
The lengths of the three principal axes {oi} are shown as well., The
probability that a point is inside this particular ellipsoid is given
by the P-fractal of the cumulative x% distribution function for f = 3
degrees of freedom. We have chosen c? = xP = 1 for Figure 18. Tables

of x2 show that the confidence level P here is 20%.

A3 10435 14

g,

Figure 18. A concentration ellipsoid for the
trivariate Gaussian probability
distribution.
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In one sense, the relation (Eq. 40) or its multidimensional
equivalent for larger number of degrees of freedom, f, is a solution of
the problem of finding the confidence region for the ME estimates. The
{J } and {q} are calculated (or equivalently the {p} and {o}) for the
Obje(t estimate {p( )} and, for a chosen confidence level, say P = 957,
one can compute whether any given point {pl}, which represents a multi-
dimensional estimate Ob{p}, lies within the hyperellipsoid given
by P. But a graphical or pictorial representation of this condition,
even in two-dimensional cases, is already problematical.

Consider a two-dimensional ME estimate where only two parameters
are being estimated, e.g., Py and Py- Suppose they are to be repre-
sented graphically as in Figure 19(a) as the strengths of the vector
components (or the function) {pi}. (Perhaps this would seem a more
reasonable procedure if we had a larger number than merely two.) In
Figure 19(a) suppose we attempt to show by two individual "error bars"
or confidence intervals, a confidence band attempting to represent
one of the accumulation ellipses of Figure 17, say for the 95%
confidence level P, This is replotted in Figure 19(b) around
(pl(O)' p2(0)).

p; or the vector {pi} in two-dimensional space. Imagine a point going

In 19(b) objects {pi} are described by the coordinates

around the circumference of that ellipse, its Py and Py values going
from maximum to minimum separately, but in a concerted fashion. I{ we
label the maximum values of Py by 1 and P, by 2 in Figure 19(b), we
can replot these points on the confidence intervals in Figure 19(a).
Notice that points outside the ellipse, such as points 4 or 5, are
still represented by points within these confidence intervals which
were determined by the maximum extent of the ellipse! By admitting
points such as 4 or 5 we have seemingly enlarged the confidence region
in a distorted way to include some portion of fractal regions, higher
than our chosen 957 value. Instead of the desired correct ellipse,

we have represented a circumscribed rectangle. There is no precise
way to represent the ellipse or hyperellipsoid in the fashion of
Figures 19(a) or 19(c¢) as confidence bands. An inscribed rectangle

for example, instead of a civcumscribed one, would indeed decrcase, or
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Figure 19(a). Graphical representation of
the two-dimensional, i.e.,
two parameter, estimates
{pl(o), P (0)} including
confidence intervals to make
a confidence band. Here
objects are described by
plotting the amplitude of the
components of {pi} considered
as a vector or a function.
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(b)

Figure 19(b). The accumulation ellipse and circumscribed
rectangle from which 19(a) is derived. Here
objects are described by points in multi-
dimensional (here two-dimensional) space
with coordinates or vector position {pi}.
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Figure 19(c). Graphical representation of a multidimensional
estimate {p,}, including confidence band, as a
generalization of 19(a).
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perhaps even eliminate improperly included extraneous regions, but it
would cut out some of the ellipse as well.

We choose a graphical method which will at least represent the
ellipse or hyperellipsoid exactly. Yet it does not always provide
visual understanding of whether a given object estimate point in multi-
dimensional P space with coordinates {pi}, lies inside or outside a
particular accumulation hyperellipsoid by merely displaying confidence
bands laid out as one-dimensional graphs of the strength of the

(0)}

components of the vector {pi + {confidence intervall (except in
some interesting special cases).

The method we choose, following our present geometrical interpre-
tation, is to use the endpoints of the ellipse or hyperellipsoid, i.e.,
the lengths along the principal axes, rather than a circumscribed
rectangle as in the example of Figure 19(b). For any desired ellipse,
these lengths, which are proportional to the variances ”q calculated in
rotated, uncorrelated q space, are then linearly projected onto p space
as components, to be used as confidence intervals. In Figure 20(a) we
show such a projection for the two-dimensional case.

The endpoint a, along the largest axis of largest 9q is projected

(o>](1> (0) (1)
2

as [pl—p along the Py axis and as [pz—p2 along the

axis. Similarly, the endpoint q, of the smallest axis of - is
(0)1(2) (0)](2)
1 2 '

the amplitudes of the projected components as confidence intervals

projected as [pl—p

‘qz
In Figure 20(b) we plot

and [pz—p

separately for the largest and for the smallest axes, Note that, unlike

the method of Figure 19, we now have two separate confidence bands,

one associated with each of the two principal axes. TIn Figure 20(¢) we

show the generalization to the multidimensional case of N estimates

or variables {pi}, 1<i<N. There are a set N different confidence

bands. Often only one or only the first few are ot any significant

magnitude, thereby greatly simplifying the problem of interpretation.
The scheme shown in Figure 20(c) is the one we adopt in this

report for our 49~dimensional study example. The geometric interpre-

tation discussed above has a well-known algebraic counterpart in the
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Figure 20(a). The accumulation cllipse of the t\zo—dimc?s%nnal
f.e., two—parameter estimates {pl O), p,
with projections of the endpoints of the major

and minor axes onto the p coordinate axes.
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determination of eigenvectors (or characteristic vectors) and the
associated eigenvalues (or characteristic values). The directions of
the principal axes of the concentration ellipsoids are specified by
direction cosines which are given by the components of the normalized
eigenvectors of a generalized variance or covariance matrix that
includes off~diagonal terms to account for correlations. Each eigen-
vector belongs to an eigenvalue, and the length of any principal axis,
ter a particular concentration ellipsoid, is proportional to the
square root of its associated eigenvalue.

It can be shown that the eigenvectors are orthogonal; therefore,
this method of principal-ixis transformation results in uncorrelated
variates whose variances are proportional to the axis lengths of any
specific concentration hyperellipsoid. To display the confidence
limits on the original unrotated object estimate, we project these
axis lengths back to the original coordinate axes {p! as illustrated

in Figure 20(c).

B. EXAMPLES

In our ME confidence examples we choose for measurement data
constraints, images in Fourier space derived from a standard test
object. That object consists of two spikes symmetrically disposed
on a support of 1<i<49 at positions i=24 and i=26. The "images" in
Fourier space differ only in the aperture or bandwidth accepted for
their measurements. The scaled apertures were varied from an almost
tull aperture of 48 units, out of 49, giving almost enough resolution
to resolve the peaks, through 24, 12 and 6 units with approximately
an eight-fold maximum degration in resolution. This afforded
opportunities for as much as an eight-fold possible enhancement bv ME
superresolution. The gamut of inverse noise or fluctuation temperature

was 2”“v'219. Larger values of # did not converge. From all these

examples studied, we will only present ten particular ones in this
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report, chosen to illustrate the main results. A listing is given in
Table 1. The ME calculations were done with the log B formulation in
the examples. This formulation used in these examples, it will be
recalled, is appropriate for signal statistics that are Gaussian in

complex amplitude or exponential in intensity.

Table 1. Parameters for Computations

Potential Factor of Inverse Temperatures,
Aperture Size Superresolution logzﬁ
6 8 0, 18
12 4 0, 8, 17
24 2 0, 16, 19
48 1 0, 18

The results are arranged in sets according to the aperture sizes
shown in Table 1. In each set two or more values of , are chosen for
examination. Heading each set there is a display of the ME estimates
tor the given aperture, one estimate for every value of ; in the
gamut of ., The hidden line graphic displays sometimes, for clarity,
require a separate picture for the positive and the negative values of
the function displaved. It should be noted that the discrete points
of the tunctions are connected bv straight lines often giving the
functions the appearance of a set of triangular spikes. This is merelv
an artifact of the representation.

The ME estimates ftor aperture size 6 and ZO;H“218 are shown in
Figure 21, The estimated objects, Ob{pi? are plotted vertically
versus i, with the estimates for various values of @ placed one behind
the other in a third dimension. The base of the figure is zero. For
this small aperture size, superresolution was not achieved, even at the

. . L, 18
coldest temperature that we could simulate corresponding to = 27,

6H8
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e Lwo peds s at 107 24, 1 = 26 are seen to be rising, however, along

. . - 13
Wit the diministing ot the central peak for  values greater than 277,
fhie-e, ot ol e other ME estimates we exhibit in this report, have
oot ot trained to o bhe normalized to unit energy, power or area, so
tiere are vnly 45 "independent"” variables, which are further constrained
in the M method (as explained previouslyv)., This normalization explains
the wvener il rise in the background with the fall in the peak as the
eolimate tends to uniiormity when - approaches zero.

e orthonormal cigenvectors of the confidence hyperellipsoid

)
K

tor = 2 and aperture = 6 are shown in Figure 22(a) and 22(b). Since
these g=space vectors are all still normalized, in the figure theyv
represent a hvpersphere,  The method used is to plot the amplitude of

the p=space components of the eigenvector (or eigenfunction) as a contin-
uous curve, atter the procedure illustrated in Figure 20 for two dimen-
sions.  The elgenvectors are rank ordered according to the strength of
thelir associated eigenvalues, the greatest called the first and the last
called the 49th., The hidden line plot hides all but the first of the
negative peaks so we separately plot the positive peaks up in Fig-

ure 22(a) and the negative peaks up in Figure 22(b). The approximate
zero level is halfwayv between the base and peaks. These eigenvectors
were then normalized according to the square roots of their respective
cigenvalues to form sy and scaled by J:f. The result for 49
dimensions, - = 20. and aperture of 6 is shown in Figure 22(c). The

base of the tigure represents minus one and the top mesa represents

- . i o),
sero. The vectors composed of the sum of the ME estimates 1p.( X
‘ i
plos .7 - ooare shown in Figure 22(d) for our present case of
: O T | (o) : < : .
aperture =ize 6 and o = 2. The case Py i minus R R

“howen in Figure 22(e) . The zero of P is the base ot Figure 22(d)
and J20e) . Figures 22(d) and 22(e) are the hidden-line versions ot the
ceparate upper and lTower confidence limits shown in the earlier
ilTlu-trative example given in Figure 20(c¢) . Here «/TT = 1.0%; lTarger

valnes wonld make p negative.
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Figure 22(a). Ortho-normaleigenvectors projected on p=space for
aperture size 6 and ¢ = 2°. Positive peaks.
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Fivure 22¢b). Ortho-normal cigenvectors projected on p=, ace tor

aperture size 6 and = 27, Negative peaks.
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Figure 22(c). Eigenvectors rescaled and projected to p-space as
1.05 {u,} for aperture 6, 8 = 2°,
i

73
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Figure 22(d). The ME estimates {p_(o)} plus 1.05 {}
, 150 1
for aperture 6, £ =727,
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APERTURE = 6
p=2°

EIGENVECTOR
RANK

Figure 22(e). The ME estimate {Pi(o)} minus 1.05 {“1-}
for aperture 6, R = 2°.
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The real probability density function P, for our problem would not

D
have anv negative values of {pi}, but our multivariate CGaussian approxi-
mation has tails to infinity. For a large enough AZ, Py could become
negative. We note in Table 2 that the maximum value of J:?-Lo avoid
this was found to vary from slightly over 1 to N2 as ¢ varies from
small to large values. These are the values of \[;Z used in the
examples plotted here. Interpreted as X2 of 48 degrees of freedom,
these confidence limits would represent extremely small confidence
coefficients. Interpreted as for one degree of freedom, for the large
cases where all but one v, are essentially zero, they represent
confidence coefficients of 70% to 84%. A possible explanation for this
upper band of the range of multiplying factors, lc¢ VC?; N2 for our
multivariate Gaussian approximate probability density function mav lie
in the fact that we are dealing with the case of Gaussian statistics.
Our "log " formulation used in these examples is appropriate for this

statistic. In the Gaussian case, Ap2 = (3)2, but recall the

definition

Thus for Gaussian statistics, = = p. Therefore in this case,

p = p ~ 1°0 is already cqual to zero. Any greater multiplier of ¢
will make p negative. This one-dimensional example may point the way
to a proper understanding of our empirical observation.

We see in Figures 22(c), (d), and (e) that the hvperellipsoid
accumulation is almost hyperspherical. There is no one o that is
remarkably greater than the others. The confidence region surrounds
the entire estimate almost uniformly. This will prove to be true for
all cases of small .

Recalling that the Tyoare equal to the square root of the cigen-
values, we see in Table 2 that the cases of ¢ = 20, for anyv aperture

size, all have an almost flat distribution of ‘]i’ varyving by, at most,
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a factor o! 2. This can be contrasted to other cases in the table

for larger - values where only one », is significant and the others are

orders of magnitude smaller.

- . . - ,18 g
[he next example, still with aperture of 6, has J] . The

1}

eigenvectors are shown in Figures 23(a) and (b). For this large
there are reallv only two significant Ty with the second more than
four times smaller than the tirst. This is evident in Figure 23,
a plot of the projection of NP Qri}. The contribution to the

contidence band is onlv near two unresolved peaks. The ME estimates

N

t _;,]

Toare shown in Figures 23(d) and (e). Again, only the first
two eigenvectors are active and only on the two shoulders of the two
unresolved peaks.

increasing the aperture size to 12 we see in Figure 24 that tor

- 28, the ME estimates begin to resolve the two peaks; at o = 318
thev are tar more resolved than demanded by the Ravleigh criterion.
This is a four-fold increase in the resolution of this aperture.

For this aperture of size 12 and ¢ = 2° the series of plots,
Figures 25(a) through (f) describe the nature of the confidence bands.
The peaks are not resolved (Figure 25(f)), and the base represents
Py = o).  The contidence bands, again as in the previous - = 2" Case,
are derived trom a hvpersphere as all the Tpoare closelv equal (see

Table 2) the smallest being 3/4 of the larvgest.

. L8 5 . .
For - = 2 and aperture 12, the ratio of the 1tirst two | are
i
,/'l = 0,280 Thus we must consider both,  Figure 26(¢) shows the
relative strengths of their associated efgenvectors, The base ot

Fiyure 26(¢) represent:. minus one.  The eftect on the contidence in the

estimates ot opo can he seen in the 1irst two rows ot Fipures 26
i

and () anoa broadening ot the inresolved sinple spike gt the positions,

i 24 and i Jo, where the two object spikes might he expected to
noeenr .,
For ' md aperture 10, the ratio ot the tirst two Qe
i
,/‘] STy o ool the tirst has an important intluence.  That only
7R
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one eigenvector has anv intluence is shown in Figure 27(¢) where the
. . . (0) - .

base represents minus one. The estimates P © e ween dn

Figures 27(d) and (e) show the eltect ot the tirst eigenvector in

putting a confidence band at twice the estimated peak heiphta.
- . - . . : S0 19
ME ostimates tor the case of aperture size 24, tor 27 - -
are shown in Figure 28 trom the rear, to better show thiat the ME

. L L6 .
estimates are beginning to resolve the two peaks when - - 27, It is

clear in this reverse plot that tor small - the estimates -pj(”)- tend
to 4 flat distribution of unitorm height except for a small single
unresolved peak. The contidence estimate is developed in Figures 29(a)
through (e¢) ltor the case - = 2“. The spread in eigenvalues is slowlv
increasing as the aperture enlarges. Here, for aperture 24, the ratio
of o is :l/“[‘()

equal, This can be noted in Figure 29(c), the base ot which ix at

1.47, still showing that all the i are essentially

minus one and the mesa top at zero, The upper and lower contidence
bands are shown in Figures 29(d) and (e), respectivelv, with the bases

; . : o),
set to zero level. The estimate itselt tpj( ),

is shown separately
in Figure 29(f) with the base at zero level,

For the casgse ¢ = 26, aperture 24, just betore obvious superresolu-
tion, the confidence results are developed in Figures 30(a) through (e).

(o),
i

The estimate {p i is shown separately in Figure 30(f) with zero at

the base. Here the ratio of the first two o is wl/no = 9,4, and the
first two eigenvectors explain most of the variance as :een in Fig-

ure 30(c¢), where the base is eqeal to minus one. The upper and lower

bounds of the confidence bands are seen in Figures 30(d) and (e).

19 . . . .
For - = 2 aperture 24, see Figure 31. As might be expected,
2 2 .
almost all the variance is ino one T - From Figure 31(c¢) we

note that the confidence band will be large only at the twe resolved
pedaks as seen in Figures 31(d) and (e).

The final example tor an almost tull aperture of 48 is intervesting
in that it asks no superresolution ot the ME method and reveals the

behavior in an unclouded wiv. The ME estimites Pi“‘ themselves are
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Figure 29(a). Ortho-normal eigenvectors projected on p-space for
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103

A







APERTURE = 24 1043649

g=20

EIGENVECTOR
RANK

Figure 29(c). Eigenvectors rescaled and projected to p-space as
1.04 {01} for aperture 24, B = 2°.
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given in Figures 32(a) and (b) for the standard and reverse view,
respectively. In Figure 32(b) we see that the peaks are already
resolved at R = 2°. Even at this large aperture the total gamut of the
9y is only a factor of two, and all the eigenvectors contribute to
explain the variance as can be seen in Figure 33(c). The bounds of the
confidence bands are shown in Figures 33(d) and (e), and the estimate
itself {pi(o)} is given in Figure 33(f).

The very last example, R = 218, aperture of 48, is shown in the
series of Figure 34. In this extreme case the first o is more than two
thousand times larger than the second (see Table 2) and clearly
accounts for almost all the variance. The hyperellipsoid, in this as
in all the other high R cases, is a "hyperneedle." In Figure 34(c) the
projected components of this vector can be seen to lie exactly on the
peaks of the object estimate, which have values almost exactly reaching
one half at the peaks (0.49866) and zero at the background (0.00006).
The upper and lower confidence bands are shown in Figures 34(d) and (e).

It should not be assumed, by way of generalization, that the
important eigenvectors will, in all cases, mimic the shape of the
estimate at high £ values as seen in this example. In another example,
not illustrated here, with a one spike object, the important eigen-
vectors did cluster around the estimated spike, but had both symmetric
and antisymmetric forms whose large components did not necessarily

exactly coincide with the position of the object peak.
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Figure 33(b). Orthonormal eigenvectors projected on
p-space for aperture size 48 and - = 2"
Negative peaks.

125

— e ——— ke e o




APERTURE = 48
p=20

Figure 33(c).

Eigenvector

p-space as 1.03 {oi} for aperture 48,

B

20

1043569

EIGENVECTOR
RANK

s rescaled and projected to




160415 70

48

nllllllILIﬂTlv <4
=N

APERTURE

\Q‘v‘\\\.A«A\\\ 7
PR,
-

EIGENVECTOR
RANK

-l

AR

The ME estimatus
for aperture

Figure 33(d) .




10435-71

g=2°

APERTURE = 48

-]
<

EIGENVECTOR

RANK

1

Aogd

1(0)* minus 1.03
g, g =2°

The ME estimates {p.
for aperture 4

Figure 33(e) .

128




1043574

APERTURE = 48

for aperture
licated

20 rep

(0)}

The ME estimates {pi
size 48 and for £

49 times.

Figure 33(f).

129




B \ el
“\\v‘ \p\ A\ / »“ }'*i'-:ﬂ“‘
k!




-




APERTURE = 48 1043566

EIGENVECTOR
RANK ;

i
Figure 34(c). Eigenvectors rescaled and projected to

p-space as ﬁé{oi} for aperture 48,
p = 218,

132




10434 67

APERTURE - 48
g- 20

EIGENVECTOR
RANK

e

Figare 34(d).  The Mﬁ(wdimAUW4{p'0”£ ”““;‘5"'l
tor apertuye e : !

48 ;l

2




1043Y 66

APERTURE - 48
.. 18
g=2

49

EIGENVECTOR
RANK

Voot Rbe b e i s
l ~
Pl g ttire (S e




SECTION 6

SUMMARY OF RESULTS

The work on the simulation of imaging with thinned, sparse, random
arrays, done in the first two years of this contract, was summarized
in the Annual Report, June 1979. 1In this section, we summarize the final
vear's work on the ME method. We present a general view of maximum en-
tropy (ME) as a method to choose the most probable object estimate from
the set of all the possible objects consistent with the degraded measure-
ments. The probabilities are assigned in accordunce with the physical
statistics of the problem at hand. The entropy is the logarithm of the
probability, We show that the two contending forms of entropy found in
the current literature, the "logB" and "BlogB" forms, are special cases
of 4 more general entropy based on quantum statistics. Our particular
formulation of the ME method can be e¢xpressed as an analogy to the thermo- '
dynamical method of the minimization of the free energy. This analogy
allows a natural way to introduce the matter of fluctuations or noise
into the method. The problem of a complete theorv of the fluctuations
still remains, awaiting a theory of the analogyv to the specific heat,

Several examples of ME estimation, in one and two dimensions and
for varving values of noise parameter, were calculated and the results
are presented graphically. The limiting effects of noise on the
possibilities of superresolution are described.

A general method for assessing the degree of confidence in the
multidimensional ME estimates was developed. The ME tormulation we
developed provides a multidimensional probabiiity function for all
possible potential object estimates consistent with the measured-image
signal data. The most probable one is picked as the estimate. We
expand this distribution function near its maximum for simplicity, and
approximate it as a multivariate Gaussian distribution. By principal

axis transformations, we derive the variances and then project them
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back to the original space of the estimates as confidence bands. A
chi-square test in many dimensions is used as the basis of the confi-
dence estimate. A particular example was studied in some detail. Two
delta-tunction spikes on a support of dimension 49, separated bv one
space, was chosen as the unknown test object. Various images were
derived by choosing progressively smaller apertures to test the method
as a function of superresolution and tluctuation or noise temperature.
Manv variations were presented spanning a range of inverse fluctuation

19

or noise temperature from 20 to 2 and potential superresolution

factors of from one through eight,
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I. INTRODUCTION

The ideal of maximum entropy (ME) restoration has
appeared in various forms in the technical literature
spanning a gamut of disciplines from seismic spectral
power estimation and prediction to astronomical image
restoration. The subject was recently reviewed,® and
an extensive bibliography was given.?

The concept, as applied to the image-restoration
problem, can be viewed as an attempt to find the radiant
spatial power pattern of the object by maximizing the
entropy of the pattern subject to the image-data con-
straints, However, the method has a weakness in its
very foundation., There are two schools of thought which
differ as to the form of the entropy to be maximized.

For convenience, we refer, in the remainder of this pa-
per, to these two as the “logB” and the “- BlogB”
schools., (Although the B is defined more fully below,

B may be interpreted, for purposes of this introduction,
as the brightness of the object or as its spatial spectral
power.) In his pioneering work in spectral power esti-
mation for geophvsical applications, Burg® used the logB
expression for the entropy, following directly from Shan-
non’s® work. In the image-restoration field, Ponsonby'
and Wernecke and D’Addario® also used the logB expres-
sion. In a recent successful work on astronomical image
restoration, Frieden® used the - BlogB expression for
his entropy.

Since these two schools have been working indepen-
dently, the question arises as to which entropy expres-
sion is the correct one to use, This question was noted
by Frieden' and Wernecke and D’Addario® as a challeng-
ing problem. The present paper is an effort to solve
this problem by demonstrating the conditions under which
the logB and the - BlogB expressions should be used,
We prove that these expressions are limiting cases of
a more general expression. We are mainly concerned
with the problem of image restoration (as worked on,
for example, by Ponsonby,® Wernecke and D’Addario,?
and Frieden'?)., Hawever, our conclusions can be easily
translated into the spectral power estimation problem
(worked on, for example, by Burg,® Radoski, Fougere
and Zawalick,” and Ulrych®,

The present paper is based on two basic interpreta-
tions of the ME restoration of an image. The first is
that, when an image pattern is given, there are many
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The two entropy expressions, logB and — B logB (where B is the local brightness of the object or its
spatial spectral power) used in maximum entropy (ME) image restoration, are derived as limiting cases of a
generai entropy formula. The brightness B is represented by the n photons emitted from a small unit area of
the object and imaged in the receiver. These n photons can be distributed over z degrees of freedom in g(n.2)
different ways calculated by the Bose-Einstein statistics. The entropy to be maximized is interpreted, as in
the original definition of entropy by Boltzmann and Planck, as logq(n, z). This entropy expression reduces
to logB and — BlogB in the limits of n >z > 1 and n ¢z, respectively. When » is interpreted as an
average R over an ensemble, the above two criteria remain the same (with n replaced by 7). and in addition
for the z = | case the log B expression, used in ME spectral power estimation, is derived for A»z = 1.

different possible object patterns that can produce the
same given image pattern, This many-to-one mapping
from object to image is an intrinsic property of any
real measuring system that has a finite aperture or
bandwidth and hence a point-spread function of nonzero
width. Another way of interpreting this point is the fol-
lowing. The information contained in the object pattern
is carried by photons through an optical system and is
recorded in the image. Information is lost in the opti-
cal system, and our problem is to analyze the nature of
the optical communication channel, and then work out
the restoration.

The first interpretation leads directly to the second.
Since there are many possible object patterns, we are
faced with the problem of choosing one or the problem
of making a criterion for choosing one, The ME method,
as interpreted in the present paper, provides such a
criterion. It presupposes that a probability of occur -
rence can be assigned to each possible pattern, and then
the ME method chooses the most probable pattern as the
estimated, or restored, object pattern.

This second point of our interpretation of the ME re-
storation method may encounter resistance from some
readers. Thus we hastily add some explanation. The
word entropy is often interpreted either as the concept
form which thermodynamic equilibrium is presupposed
or as a measure of “randomness” (often without a strict
definition of randomness)., We do not invoke these con-
cepts; in the present paper, the word entropy is used in
the sense of Boltzmann’s definition and is defined as the
logarithm of the probability. Since the logarithm is a
monotonic function of the argument, to find a maximum
of the entropy is to find a maximum of the probability.

Based on these two fundamental concepts, we show in
the present paper what the probability of finding an ob-
ject pattern is, and then we show under what conditions
the entropy form to be used is logB or - BlogB. Instead
of starting from Shannon’s entropy expression, as Burg®
did, we go much further back. (Shannon's entropy is
shown to be a special case in a later section.) We start
(in Sec. II) with the probability of a brightness pattern
in an object (based on the Bose-Finstein statistics,
which photons obey), This leads to the logB and - Blogh
distinction for certain special cases. The number of
degrees of freedom for the photons, a basic concept 1n

Copynght {978 by the Optical Society of Amenag (I



Sec. lI, is discussed separately and in detail in Sec. III.

The entropy used in Sec. II is perfectly authentic
and in keeping with Boltzmann’s original concept; how-
ever, the formulas in Sec, II differ from the ordinarily
seen - f logf form of the entropy. To resolve the ques-
tions some readers may have concerning these formulas
a simple example of the multinomial expression applied
to dice throwing is given in Sec. IV, The concepts of
a priori probability and the familiar entropy form
- flogf are explained in that section.

The dice example in Sec. IV leads to the next section,
in which Shannon’s and Burg’s formalism are derived
and interpreted. Section V presents the formulation
based on the ensemble, which can be useful in accounting
for noise in the ME formulation,

1. PROBABILITY OF AN OBJECT PATTERN

We assume that the object of interest is a two-dimen-
sional distribution of photon sources in the far field.
The two-dimensional space in which the object is viewed
is divided by a hypothetical rectangular mesh into equal
square cells of area w? each. The choice of the size w
is arbitrary at this stage, but not without important con-
sequences, as will be discussed below,

The number of photons coming from the jth object cell
(7=1,2,...) to the receiver in the observation time ¢
is written as the dimensionless quantity n,, (These pho-
tons may be emitted from the object or reflected from
it.) The ultimate goal of the maximum entropy method
we present in this paper is to calculate the most probable
spatial pattern {n ;} for the object. To free the presenta-
tion from unessential complications, we assume that the
photons are quasimonochromatic with bandwidth Av,
Further, it is assumed that the object is not colorful,
which implies that all Ay;=Ap, This simplifies the dis-
cussions of coherence volume® and of the number of de-
grees of freedom for the photons.

A basic postulate of our analysis is that for each cell
there correspond z degrees of freedom for the photons
detected from that cell. The value z is proportional to
the area w?, the bandwidth Ay, the aperture of the de-
tection apparatus, and the time interval ¢ of observation,
However, we first leove the value of z unspecified, ex-
cept that it is a given positive integer and is constant.
The meaning and the value of z are discussed in detail
in the next section.

The number #n, of photons are arranged (distributed)
over the z degrees of freedom within the bandwidth A v
with the condition that multiple occupancy in one degree
of freedom is allowed because of the Bose nature of
photons. The number of macroscopically indistinguish-
able ways ¢, that such an arrangement can be formed is
expressed by the combinatorial formula for Bose-Ein-
stein statistics!®:

(ny+z - 1!

aim) = = @1

Each of these arrangements is a quantum-mechanical
state of the n, photons. We now postulate that each of
the g, different (microscopically distinguishable but
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macroscopically indistinguishable) arrangements occurs
with the same a priori probability. This postulate,
which corresponds to the “equal-weight” principle of
quantum mechanics that each eigenstate of the Hamilto-
nian is occupied with the same probability, is the basis
of the statistical analysis of this paper., The equal-
weight postulate allows interpreting ¢, as the weight fac-
tor, or the degeneracy, for cell intensity n,, Thus q,

is proportional to the probability that n; photons are dis-
tributed over the z degrees of freedom,

The concept of the probability ¢, in Eq. (2.1) can be
understood by a simple example of throwing dice, Sup-
pose we throw two dice and count the sum of the two
numbers. The number of different ways the sum 5, for
example, appears is four, because the possible combi-
nations are (1,4), (2,3), (3,2), and (4,1), We write this
as q(5)=4. The general expression for the number of
ways g(n) that the sum »n appears is

gin)=6-17~n (2.2)

For fair dice, the probability that the sum n appears is
proportional to g{n), Corresponding to what we said
concerning Eq. {2.1), the postulate for this example is
that each of the four states (1,4), (2,3), (3,2), and (4,1)
appears with the same a priori probability,

Different from ¢(n) for dice in Eq. (2.2), the algebraic
expression for q,(n,) for photons in Eq. (2.1) contains
factorials. For the purely practical reason that in
working mathematically with factorials, it is easier to
first take the logarithm, we take the logarithm of ¢, in
Eq. (2.1) and introduce an expression s,:

2.3

We do not yet call this quantity entropy because we wish
to avoid invoking the connotations and misconceptions
sometimes associated with the word. We now examine
some limiting cases of Eqs. (2.1) and (2. 3).

{A] when z=1, Eqs. (2.1) and (2. 3) give

s/n)=lng,(n,) .

(2.9

This is understandable because, when the number of de-
grees of freedom is unity, all #, photons occupy the same
degree of freedom and, as photons are indistinguishable
from one another, the degeneracy is unity.

g,=1and s,=0 .

[B] When 1<z<n,, it is easier to work with the
logarithmic form s,(n,) because we can use Stirling’s
approximation. Neglecting z/n, in the expansion, we
arrive at

s;=(z2=1)lnn,-In(z - 1)! (2.5)

[C] When z>» n,, we again use Stirling’s approxima-
tion, neglect n,/z, and approximate Eq. (2.3) as

s;=nylnz —ny(lnn, 1) | (2.8)

This expression is exactly the classical (i.e., Maxwell-
Boltzmann particle statistics) limit of Eq. (2.1) when

n, “particles” are distinguishable, in agreement with the
general property that in the limit of z »>n,, Bose statis-
tics approach classical statistics.

We are interested in the entire object mad. of many
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cells, each of area w?. We ask the number of ways ”,
n,, ... photons come from the [irst, second,... cells,
respectively, independently of each other. Then the en-
tire number of ways @ is the product of ¢,’s in Eq. (2.1)
since each cell is independent:

Qny, g, ... )= I;Iq!("/) . 2.7

We then see what the logarithm of @ looks like, In writ-
ing it, we introduce n for the total number of photons:

"’t”! . (2.8)

J

and define, for mathematical convenience, a normalized
object pattern

byEn,/n . 2.9

This introduction of the normalized p, does not mean
that we are assuming p, to be independent of the total
intensity of light n; when the object is illuminated by
another light source, for example, p, can vary as the
total illumination changes because reflectivity may not
be linear in intensity and uniform over the object. At
any rate, it is meaningful to talk about the relative local
intensity p for a given illumination condition, and for a
given recorded image.

The three limiting cases of S=1nQ@ are given below:
[A] When z=1,
@=1and S=In@=0 . (2.10)

This means that the probability @ is independent of the
photon distribution {p,}, whatever {»,} may be, and hence
all distributions {p ,} in the object space are equally like-
ly!

(B] when 1<z<n,, Eq. (2.5) leads to

s:‘;s,=zl [(z-x)lm-m(z-1)!]+(z-1)2;1np, .

(2.11)
[C] When z>n,, Eq. (2.6) leads to

S= s, =nln(z/m)=n 3 p,(inp, - 1) . (2.12)
1 1

Following Boltzmann'! and Planck, ! it is customary
to call the logarithm of the degeneracy (weight factor,
or probability) the entropy, Since the probability is
proportional to the number of ways a certain event oc-
curs (when each way appears with the same a priori
probability), our S, which is the logarithm of the num-
ber of ways, may also be called the entropy.

In the “maximum entropy” algorithm for calculating
the object distribution, z and the total intensity » are
fixed numbers; therefore only the p-dependent terms in
Eqgs. (2.11) and (2.12) are significant. When we exam-
ine the p-dependent terms, we note that Eqs. (2,11) an
and (2.12) contain J1np, and - Ip,1np,, respectively.
The p, in these expressions is the normalized brightness
which we wrote as B in the introduction. Therefore it
is legitimate to identily case [B] with the logB expres-
sion used in ME image-restoration studies®® and case
{C) with the — BlogB expression.’ (We deliberately
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use B, for brightness, rather than p because of the opin-
ion, sometimes heard, that the entropy is always of the
form -p lnp and never Inp.) In each of these expres-
sions, an accurate value of z is not needed in finding

the distribution {p,} that maximizes the entropy. What
is needed is the knowledge of the ratio n/z, The num-
ber of photons n/z per degree of freedom (or per mode)
is a useful concept and is widely used in the statistics

of radiation, ¥

One exception to which the n/z criterion so far cannot
apply is case [A], in which z=1. The analysis in this
section says that case [A], to which the wave analy-
sis®™* initiated by Burg actually belongs, cannot be
classified either to the logB case or the — Blogh case,
We return to this problem in Sec, V, in which we treat
the problem based on a fixed value of the average of n
rather than n itself,

1. NUMBER OF DEGREES OF FREEDOM

The idea of the number of degrees of freedom z for
photons used in the previous section is basic in this pa-
per. Therefore we discuss the concept in detail in this
section. The z for photons emitted from an area u'? of
the object space and observed within time ¢ can be de-
veloped in either real space or phase space.

In real space, first we consider the coherence volume
for a photon, In the longitudinal direction of propaga-
tion, this volume may be considered to have a coherence

_length I given by the coherence time 7~ 1/Av multiplied

by the velocity of propagation c:

l=c7 . 3.1)
In the transverse direction, the coherent area ¢ grows
by propagation to a large range R and is inversely pro-
portional to the area of the source w®. Using an arbi-
trary cutoff for the acceptable degree of partial coher-
ence, we may write a simple expression for o from the
Zernicke-van Cittert!* theorem in the far-field limit:

o= R /w? | (3.2)

where ) is the wavelength of the photons, Again, note
the dependence of @ on the source, except for R?,

The coherence volume may be taken as the product of
the coherence area o and coherence length I:

Ven=cTO=c'RE/FAvut | (3.3)

The coherence volume corresponds to one degres .f
freedom for the photon; it is not possible to distinguish
the photons by interference experiments, for example,
in one degree of Ireedom or in one coherence volume,

Now we define z. Suppose we detect photons in a de-
tection time ¢, Ignoring the transverse coherence area
for a moment, we can say that we have detected these
photons in /7 =2z coherence lengths or degrees of free-
dom, The number of degrees of freedom should also
depend upon the ratio of the area A of the detector aper-
ture to the coherence area o of a photon, This ratio
contributes a factor A/o in 2, S0 z may be viewed as the
number of times the coherence volume c70 (which rep-
resents a degree of freedom) is contained in the “detec-
tion volume” ctA:
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We may think of the number of degrees of freedom as
being made of two factors: a temporal one z, and a spa-
tial (two-dimensionalarea) z,. Whenever either 2, or 2,
is less than unity, the photons detected are still indistin-
guishable, so we round 2, or z, up to one degree of [ree-
dom.? We have used a simplified definition of the num-
ber of degrees of freedom to avoid nonessential compli-
cations; we assume that simple reciprocal relations
hold between w? and o, and between Ay and 7, and that
all Ay, =Av, A detailed study of coherence volume with
more general partially coherent sources given in Ref,

9 agrees with the qualitative presentation given here,

The number of degrees of freedom can also be repre-
sented in phase space. The phase space of the conjugate
variables, time, and frequency (bandwidth), is commonly
employed in communication and signal processing theory
Utilizing the sampling theorem, this phase space is usu-
ally partitioned into equal unit area slices at equal time
intervals representing one degree of freedom (z,=1) per
measurement in the sampling of a time series, Alter-
nately, it is partitioned into equal unit area slices at
equal frequency differences representing one degree

of freedom (z,=1) per measurement in the sampling of
a spectrum,

Since it is not necessary to have these particular par-
titionings or to have only one degree of freedom per
measurement (except for the satisfaction of the sampling
theorem), measurements are not always made in that
fashion, As we shall see, for example, in the observa-
tion of Poisson temporal processes, z, is necessarily
greater than one.

The two variables, spatial extent, and spatial frequen-
cy which are conjugate to each other, define additional
dimensions of phase space besides the familiar time-
bandwidth dimensions, This geometrical phase space

of space and reciprocal space has been used in studies!®
to define the number of degrees of freedom in images,
This is our 2z, factor. We include in the image analysis
and estimation problem the previously neglected (in
image studies) z, to count the entire number of degrees
of freedom in an object. Our previous definitions lead-
ing to the number of degrees of freedom (Eq. (3.4)] are
simply a casting of phase space ideas in terms of coher-
ent volumes and detection volumes.

Several comments are in order. Changing the arbi-
trary size w of the object space cells will have impor-
tant effects on the reconstruction and possibly even on
the statistics, This is not a defect of the method, but
rather one of its important assets, For example, mak-
ing w smaller than the resolution limit set by the detec-
tion aperture A will result in “super-resolution,” When
we make the object cell size w? smaller than a resolu-
tion element to achieve super-resolution, z, remains at
its minimum value of one degree of freedom,® but the
number of photons decreases in proportion to w2, This
is an important example of a case where the n/z ratio is
not a constant determined by physical properti€s of the
source, The number of photons per degree of freedom
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decreases as the super-resolution increases as A/o

< 1(and in the same fashion as {/7<1). Super-resolution
may be viewed as a special case of reconstructing from
under-sampled data, More general cases of undersam-
pling of the aperture plane (e.g., sparse arrays of an-
tennas), which do not involve super-resolution at all in
the reconstruction, can also be handled.

Throughout this discussion we have assumed rather
ideal detection processes in which the photon distribu-
tion is closely mirrored by the distribution of photoelec-
trons, or of exposed silver halide grains in photography.
The accumulation of photons has been assumed to be pro-
portional to time. Similarly, we have assumed that the
number of collected photons is proportional to the de-
tector area A, When the efficiency of photoelectron de-
tection is less than unity, binomial distributions for the
probability of detection and nondetection alter the distri-
butions,!® However, for the estimation of » and n 'z, it
is sufficiently accurate to take the photoelectron distribu-
tion as a mirror of the photon distribution.!” In fact, the
distribution devised by Mandel'® for photoelectrons from
rather different considerations is exactly the negative
binomial distribution which we also display for bosons.
Photographic detection is complicated by a threshold ef-
fect, but the effects of photon statistics have been theoreti-
cally shown'® todisplay the characteristic boson “clumping”
elfects with increasing n/z in the density versus expo-
sure photographic characteristic curve, consistent with
the Bose distribution. The distortions of detection will
rarely be so great as to alter the estimate of the magni-
tude of n/z, which is all that is required here.

An absorption at the source or at the detector as well
as change in the illumination intensity (in the case of
reflection) not only change the total intensity, but may
also influence the statistics. If we have a priori knowl-
edge of this, it could be taken into account to determine
a corrected n/z appropriate to the statistics before the
lossy process,

Let us examine some examples which have different
n/z values, If we had some a priori knowledge of the
photon frequency distribution function of the object, for
example, if we know that the radiation detected at the
frequency v was from a black body at a certain tempera-
ture T, then we could use the well-known relation for
the average number of photons per mode (or per degree
of freedom) at thermal equilibrium n/z as a function of
Tand v:

n/z =[exp(hv/kT) - 1] , (3.6)

where h is Planck’s constant, A reduced value of n/z
is employed when A/0 <1, as in super-resolution, or
when #/7 <1 as mentioned before. As an illustration,
suppose we were to restore an image of the sun, which
is approximately a blackbody, the mean chromosphere
temperature of which could be taken closely at 6000 K.
Using Eq. (3.8), we find that n/z << 1 in the visible re-
gion and that - BlogB is the appropriate limiting form
of the entropy expression. For a solar image using
wavelengths larger than 3 um, n/z is greater than one,
and the correct form would be logB. Since all the planets
have a very small n/z ratio in the visible and infrared
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regions, — BlogB is the appropriate entropy form to use
for restoring their images.

Without this kind of blackbody a priort information,
we could still make independent measurements of 2z or
of the n/z ratio. A determination of source size, &v
from the spectral line shape, and detector parameters
will give z, The number of photons n is presumed mea-
surable. More conveniently, if the isotropic flux or the
related brightness B (W m™ sterad™ Hz"Yis measured,
then

n/z=B()c*/2n® . 3.7

The factor of 2 is chosen for the case of unpolarized
brightness. This relation, of which the blackbody dis-
tribution is a special case, can be seen to follow from
the definition of B and from Eqs. (3.2), (3.3), and (3.4)
providing 1/7 is simply Av, To this approximation we
may apply Eq. (3.7) to estimate n/z for nonthermal
sources such as the many radio astronomical objects
where synchrotron radiation, for example, plays a
dominant role. Equation (3.7) tells us that the bright
Double Cygnus A (3C 405) at 960 MHz has an enormous
n/z~10°% Similarly, Centaurus A (CTA 59) at 178

MHz has a very large n/z~ 10*. The bright radio astro-
nomical objects likewise have a large n/z, and the logB
entropy expression is appropriate.® Images of less
bright objrcts and at shorter wavelengths will dictate
the - BlogB form.

For the optical astronomical objects Frieden worked
with, we see n/z<« 1 and hence - BlogB is the entropy
expression that Eq. (2.12) gives, which is in agreement
with Frieden’s choice, The radio astronomical case of
Wernecke satisfies the relation n>>z >1, and hence the
logB expression of Eq. (2.11) is the right entropy ex-
pression, which again supports Wernecke’s choice.

IV. EXAMPLE OF MANY THROWS OF DICE

The main purpose of the present paper is to point out
the importance of the g,(n,) factor in Eq. (2.1) in formu-
lating the entropy of the ME method. However, we must
still answer the legitimate question of why our initial
and fundamental entropy (2. 1) does not resemble the
expression ordinarily seen for entropy, namely - Jf,1nf,
or - Ip,Inp, where, for example, f, is the distribution
function and p, might be the probability, To answer this
question, we start with an example of counting the num-
bers on many throws of two dice.

In the existing logB school of ME spectral estimation,
for example, the basic assumption is that the measured
number of photons n can be taken as the estimate of the
average number of photons 7, in unit spectral width (or
emitted from the ith cell of the object). This is differ-
ent from the basic postulate of Sec. II that the number
(not the average number) of photons of the ith cell is n,,
When we say the average is n,, we are thinking of many
cases with varying individual numbers, For example,
when two dice are thrown many times, the average of
the throws is 7, but individual throws can be distributed
between 2 and 12, To explain the relation between the
point of view of Sec, II, which is based on one fixed
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number n,, and the other point of view based on the av-
erage n,, we use yet another dice example in this sec-
tion.

Suppose we throw two dice many times and ask how
often the number n appears. Let the total number of
throws be M, and the number of throws in which n ap-
pear be Mf,. Then the probability that, out of the en-
tire M throws, 2 appears M7, times, 3 appears Mf,
times, ..., is written

) M!
IRCTATNC ALY TART

‘?(flr fav see a—fll)

x g2 g(3)¥s . |, g(12)¥/12
12
2 fa=1,
a2

in which g(n) is the probability that n is found in one
throw. The previous equation (2.2) is an exampie of
q(n) for a pair of fair dice.

4.1)

When we throw the dice a very large number of times
(M > 1), the number of times n appears approaches
Mf (', where the set {f{”’} maximizes the probability
function ®(f1*, £3°,...,fi3"). The common mathemati-
cal procedure of finding a maximum of such a function
is to require derivatives of its logarithm to vanish. So
we first form the logarithm using Stirling’s approxima-
tion (which is permitted since M is a large number) as '

12 12
Ssln0=M[-Z;f.1nf..+2f.W(")

+x(1-if,,)}. (4.2)

The last terms, A( ), are written to satisfy the normal-
ization of f,, and X is the Lagrange multiplier. When
we maximize S in Eq. (4.2), we arrive at the most prob-
able distribution:

12
f,‘,"=q(n)/2 gln) . (4.3)
L]

Several comments are in order,

(i) The ®(f,, fs,..., f12) expression in (4.1) is a term
in the multinomial expression, The expansion can be
written

(g2 +a@)+ ... +qU¥=D"0(fy, fy,.. ., 1)
(4.4a)
where the sum J is done under the condition
Mfg+Mfyo. oo s Mfiy=M | (4. 4b)

The multinomial expression o(f,, fy,. ..
tensively in probability theory. !

. f12) is used ex-

(ii) The probability expression #(f,, f;,..., f,) in
Eq. (4.1) is based on M throws of the dice. A collection
of repetitions of an event is often called an ensemble.
Thus we can say f, represents the distribution of n over
an ensemble,

As we see in Eq, (4.3), the probability of a single
throw g(n) is proportional to the distribution function
over an ensemble, Inthe same way, any probability
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consideration (for example, the probability concept used
in Sec. II) has the concept of an ensemble in its founda-
tion. Actually the probability can onlv be defined using
many tries [this is discussed in (iii) below]. However,
when we use the term ensemble in the present paper, it
is defined in a limited sense, namely that the average
number of photons 7 is fixed in the ensemble, but that
individual n’s in the individual facsimiles can fluctuate,

(iii) For fair dice, we can write on g(n) of Eq. (4.3)
as given in Eq. (2.2). However, if the dice are loaded,
the probability of finding n is not given by Eq. (2.2), but
can be a complicated function of n. Even in such a case,
many throws (the limit of M - ) can yield the knowledge
of g(n) through Eq. (4.3). In Sec. II, we used the quan-
tum nature of photons and accepted the formula for
g/n,) as given in Eq. (2.1),

(iv) The reason why we give the dice example in this
section is to point out that the probability expression
®(f, ..., fiz) in (4. 1) is made of two factors. We will
call the combinatorial factor @, and the rest ®,. It is
a common practice, which we do not follow in this paper,
to call ln®, the entropy; ln®, takes the familiar form

In®,=-M)Y_f,Inf, . (4.5)

The most probable distribution f.°' is derived not by
maximizing only In®, in Eq. (4.1) but by maximizing the
entire probability In®, +1n®, in Eq, (4.2). Only in the
case in which ®, is a constant, independent of f,, can the
most probable f{°’ be derived by maximizing In®, alone.
This latter case will be discussed as a special case of
the development given in the next section.

V. FORMULATION BASED ON THE AVERAGE #;

In Sec. Il we mentioned under the classification [A]
that when z =1 we cannot reconstruct the image using
the ME concept (and Burg’s case belongs to this class).
This is because the probability of n, photons being emit-
ted from the jth cell is calculated using the ¢ (n,) ex-
pression of (2, 1), which is identically unity for one de-
gree of freedom,

Even when z2=1, however, we can talk about the prob-
abilitv that n photons come from the cell if we have pre-
vious knowledge, by some means, of the distribution
function f,. Actually we do not need to know the entire
function f,, but it is sulficient to identify n, as an esti-
mate of the average number #, of the distribution. When
we make this identification, we can derive the most
probable distribution £’ and the probability of finding
n associated with f{°’, Thus, we formulate the present
section based on the distribution and on the concept of
the ensemble (in the sense we defined it in the previous
section). This treatment allows us to understand some
cases of the logB school of the ME estimation method.

We consider an ensemble made of a large number M
of nearly identical facsimilesor sytems, each system
representing the single jth cell treated in Sec. II. The
number of systems which have n photons each is written
.M. This function f, is not the so-called cumulative
distribution, and it is sometimes called the probability
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density function. This definition implies the normaliza-
tion for f,:

Z-fﬁl . {5.1)

The set {f,,} specifies a particular state of the ensemble,

We are interested in counting the number of different
ways, which we designate as P {f,}, that an ensemble
can be constructed. P{f,}is made of two factors. The
first is the number of ways of making a distribution {7,}
over the ensemble:

a{r) =.w!/r[ AL (5.2)

This corresponds to the combinatorial factor in Eq.
(4.1). The second factor comes from the fact that n
photons from a cell have the a priori weight or degen-
eracy factor g{n) as is represented in Eq. (2.1):

g =(m+z-D!'/mliz-1" (5.3)

Since each system can take its configuration indepen-
dently from the other systems in the ensemble, the sec-
ond factor Q{f,} is a product of (5.3) for each system
and is expressed

Q=TT qm¥r . (5.4)

The total number of ways that the distribution {7} is
achieved in the ensemble is then the product of the two
factors @{f,} in (5.2) and @{/,} in (5.4):

pirt=0{r}els} . (5.5a)

This P is of exactly the same nature as @ in Sec. IV and
is a multinomial expression:

M)
P = ——— l I M1,
{f"} H (‘wfn)' L] q(’l) : ) (5- Sb)

After we thus define the distribution {7,} over the en-
semble, we ask for the most probable distribution { '}
when the average n is given as n. This distribution {f{"}
must be the one which maximizes the probability (degen-
eracy, or the number of ways of constructing the ensem-
ble) P{f,} in (5.5). Since it is convenient for mathema-
tical reasons, we maximize InP{f,}:

S{f.}=1nP{f,} =Inq{f,} + nQ{f,} . (5.6)

One may call either In®{f,} the entropy or the entire
lnP{f,,} the entropy. However, there is no such arbitrari-
ness when the maximum distribution {f{>'} is to be de-
rived. The function to be maximized is not InQ{,},
which has the familiar ~ f Inf form of entropy, but the
entire InP{f,}, which includes the a priori terms. Since
the term “maximum enfropv restoration” is in use, we
will call the entire expression (5.6), InP{f,}, the en-
tropy in this paper.

Using Stirling’s approximation, we derive

S{f/M==3 fnfy=1) =143 f,Ing(n)

W(;-‘L::nr,)n(x-Zf,). (5.7)
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In anticipation of the maximization, we used Lagrange
multipliers » and p for the subsidiary conditions ex-
pressed by Eq. (5.1) and by

Adnt, . (5.8)

The most probable distribution f.°’ is derived by max-
imizing (5.7) as

eun (+2=1)

nt(z-1) - (5.9)

riae

The normalization coefficient ¢™ is determined from Eq.
(5.1) as

ez . 1
e‘=§————n, o ¢ T (5.10)

Because the combinatorial factor in (5.9) is thus of the
expansion coefficients in (5. 10), the distribution in (5.9)
is called the negative binomial distribution,? and (5.10)
is its generating function, The other multiplier .. is de-
termined from (5, 8) as

u:m";z ) (5.11a)

Substituting this in (5. 10) allows us to write X as
n+2
7 -

r=zln (5.11b)

Using these two expressions in (5.9), we can write f{”
explicitly as

r},ﬂ=(=‘—)'< d ) rez-L)! (5.12)

n+z) \n+2) n'(z-1)!

When the entropy expression (5.7) is a maximum and f,
is equal to f.° in (5.9), we can show, using Stirling’s
approximation, that the entropy corresponding to the
most probable distribution is

S{fiY/M=pnsr=(+2)In(+2)-Alnii-zIlnz , (5.13)
An entropy expression equivalent to (5.13) was derived
by Gamo®® for partially coherent light beams.

‘We examine the three limiting cases corresponding to
those presented in Sec. II.

[A] When z=1, the a priori probability g(n) in (5. 3)
reduces to unity so that the general entropy expression
(5.7) simplifies to the lirst summation — £f,In7,; this
is the expression of the entropy used by Shannon in his
information theory. In this case, the most probable
distribution (5. 12) is reduced to the exponential distri-
bution®*:

flo= -’.;%(;%)" , {5.14)
and the entropy expression (5.13) becomes
S{FE/M=(+DInE+1) =AlnA . (5.15)
When 71 > 1, this further reduces to
S{FiMN/M=1+1n . (5.18)

This equation is the classical wave (field) limit of the
entropy expression for the Bose-Einstein statistics,

The entropy expression in (5, 18) is equivalent to the
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form that Burg used in his ME treatment, (The mathe-
matics is the same if we formulate for the spectral
analysis problem.) OQur derivation of (5,186) in this sec-
tion is similar to the method used in Shannon’s theory*
of communication. In Shannon’s treatment, the frequen-
cy of repetition of measurement is controlled by the
sampling theorem; each measured sampled point there-
fore corresponds to one degree of freedom, mode or
state, and hence z=1_ Naturally, the Gaussian distri-
bution in complex amplitudes for the classical wave rep-
resentation or, equivalently, [or the exponential dis-
tribution of photons plays the dominant role in the tradi-
tional information theoretical exposition as the most
probable distribution, and for these cases our reasoning
supports Shannon’s expression of information,

In considering the distribution function f, in this treat-
ment, Shannon considers n to be a continuum variable,
We can easily check that, when summations over dis-
crete n used in deriving (5.15) are changed into inte-
grations over the continuum of n, we arrive at (5.186)
rather than (5.15). So far as our formulation is con-
cerned, this is equivalent to assuming n -- 1,

In deriving the negative exponential distribution (5. 14},
we assumed that # is fixed. This procedure is equiva-
lent to using the complex wave amplitude formulation
together with the assumption that the power (i.e., the
second moment) is given and deriving the Gaussian dis-
tribution in complex amplitude as was done by many
authors in communication, astronomical imaging, and
geophysical applications, 2

It is noteworthy that the distribution function (5.12)
for a general z (when more than one degree of freedom
is involved in the considerations) can be derived from
the z=1 case (5.14). As an example, we derive the
case for z=2, The distribution function for this case is
derived using the property that the distributions in each
degree of freedom are independent and thus the joint
probability is a sum of products of (5,14) in the convolu-
tion form:

L4 5 o\2 NN

;ﬁ”’ﬂ%ﬁ(%) (\:%) (N+1) . (5.17
By comparing this with (5.12), we can verily that (5.17)
is the distribution f{°’ in (5.12) for the case z=2 and
N=2#, Using (5.10) and the generation function tech-
nique, it can be found in general that, when z factors of
the exponential distribution (5.14) are convoluted, the
negative binomial distribution (5.12) results with the
mean of the resultant distribution equal to z times the
original average »n in (5,14), This convolution is an-
other way of understanding the negative binomial distri-
bution (5. 12) that arises when more than one degree of
freedom is involved, This result also confirms the
legitimacy of the entropy expression (5. 6) in which both
the © term and the @ term are included.

[B] When 2z 7, the entropy expression (5. 13}, using
Stirling's approximation, reduces to

S{ri/M=zInfi+z~2lnz . (5.18)
This corresponds to the logB (Inn) entropy expression
(2. 5), recalling that z is a constant, and # is the vari-
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able. The other terms are merely additive constants,

[C] When 2 is large compared with n, we can use the
same approximation as we used in (2. 6) and reduce f!”
in (5.9) to

Fir =2 ! (5.19)
Further, (5.11) reduces to

pw=In(z/n)and A=n . (5.20)
From these two, we obtain

@2 eF @) /mt (5.21)

which is the Poisson distribution.
sion (5.13) reduces to

s{r"}/M=Alnz -n(lnn-1) .

The entropy expres-

(5.22)

This corresponds to the - BlogB expression in (2. 6),
again recalling that z is a constant and n is the variable,
Equation (5. 22) is the classical (i.e., Maxwell-Boltz-
mann) particle limit of the Bose statistics.

The Poisson distribution of photons in this limit is
well-established experimentally, The derivation of the
Poisson distribution in this limit [C] and the exponential
distribution in limit [A] supports the correctness of the
analysis in this section, Many authors have noted the
importance of the Poisson distribution and have em-
ployed it for imaging® and communication®® studies.
However, they did not derive it ag a most probable dis-
tribution under specific conditions as they did for the
Gaussian, but adopted the Poisson distribution ad koc.
The reason they®s could not so derive the Poisson dis-
tribution is that they maximized only the InQ{f,} term,
leaving out the an{f,‘} term in (5.6). In evaluating the
probability when 7, is of the Poisson form, they again
incorrectly used - J £, logf, for the (logarithm of) prob-
ability (which does not represent the total probability in
the Poisson case), However, Rényi and McFadden®’
did each independently derive the Poisson distribution
by maximizing the probability expression, which included
the appropriate a priori term, as we do in the present
paper. Although they were interested only in the prop-
erties of the probability of point processes, their ap-
proach and result support our reasoning.

One objection to including the InQ{/,} term in the en-
tropy expression might be that such a definition would
not satisfy the intuitively motivated induction condition,
the third property {or the measure of information postu-
lated by Shannon: namely, that if an original choice is
composed of several successive choices, then the mea-
sure of information should be expected to be the weighted
sum of the individual measures.?® On examination, this
condition or axiom is meaningful only when the choices
are, a priori, equally likely; it is not suitable when they
are not. When the choices are equally likely, the 1nQ{f,}
term in (5.8) is irrelevant and thus the = f log f form of
Shannon’s information results,

V1. RELATION BETWEEN THE TWO DERIVATIONS

In Secs. IT and V, we derived the entropy expressions
for a cell and for an ensemble of cells, respectively.
By comparing the two results, we can show the consis-
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tency of our analysis, We will demonstrate that if the
exposure time of forming the image 1s very long, for
example, the analysis of Sec. 11 (which is based on a
fixed number of photons) and the analysis of Sec. V
(which is based on a fluctuating number of photons) agree
with each other in the entropy expression as long as

n/z is the same in both,

We rewrite (2.1) for one cell as

- 1
s =lnw , 6. 1)
¢ n !(z,-1)!

where we write n, and 2, for n; and z, respectively, in
{2.1), the subscript ¢ indicates that these are quanti-
ties for a cell. The ensemble expression (5.13) is
written as it is:

S=M(+2)In(R+2)-nlnA - z1nz) . (6.2)

In comparing the two expressions, n, is the number of
photons detected from the cell of the area n* within a
certain specified detection volume V=ctA [Eq. (3.4)].
The quantity 2. is the number of degrees of freedom as-
sociated with a photon coming from that cell. There 1s
no restriction on the values of n. and 2., except that
they be non-negative integers. It is meaningful to ask
about the relationship between (6.1) and (6.2). For
this purpose, let the detection volume V used in defining
z,in (6.1) be equal to M times the corresponding V
used in (6.2), This introduces the correspondence

n.=Mnand z. =Mz . (6.3)

Substituting (6. 3) into (6. 1) brings s exactly into the
form (6.2) for S when we use the approximation

Mz »1 (6.4)

together with Stirling’s approximation (which is justified
when M is very large). It is to be noted particularly
that the limit of 2z, >> 1 in (6.1) agrees with the case of
z=11in (6.2).

VII. FERMI STATISTICS

The formulation in this paper has been based on pho-
tons and the Bose-Einstein statistics. It is natural to
ask about the case of the Fermi-Dirac statistics because
an image-restoration problem of a similar kind exists
there (for example, in the field of electron microscopy).

For the Fermi case, we need modify Sec. II only
slightly. We again divide the object space into cells,
The number of electrons which have been emitted from
the jth cell withinthe observationtime is written as n,.
The number of degrees of freedom corresponding to the
cell is written as z. The number of ways g, that the n,
electrons can be distributed over the z degrees of free-
dom is written by the binomial expansion coefficient

(Fermi-Dirac statistics)
q=2' (z=n)n! | (7.1a)

which replaces Eq. (2.1). We can define the entropy

for the cell as we did in (2. 3):
s;=lng, . (7.1b)

As in Sec, II, case [A], z=1, yields s,=0. Different
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from previous sections, the restriction in the Fermi
case is

zz=nm, , (7.2)

because of exclusion principle, and hence case [Blin
Sec. II is of no concern. Corresponding to case [C],

z »n,, the entropy expression for the entire object field
becomes

S=Y s,=nln(z/n)~n ) p, (lnp,-1) , (7.3)
7 7
where we define, as in (2.8),
o
n:Zn, , (7.4a)
P;=";/" . (7. 4b)

Since case [C] is the classical particle limit, it is natur-
al that the entropy expression (7.3) is exactly the same
as that derived for the classical particle limit of the
Bose case (2.12). The ensemble formulation can be
done as in Sec. V by replacing g(n) in (5.3) with the bi-
nomial expression corresponding to (7.1a). Again for
case [C], in which z>n, we arrive at the classical par-
ticle expression (5.22),

vil. DISCUSSION

In clarilying the concept of entropy discussed in pre-
vious sections, it is important to comment on the entropy
as used in a class of problems that is similar to, but
distinctly different from, ours, In statistical mechanics
as well as in other fields, the entropy can always be
written InI', where I' is the number of microscopically
distinguishable different ways in which the macroscopic
configuration of the system can be arranged under given
constraints defined in the problem, whatever the prob-
lem may be. This concept of entropy InI’ is valid for a
state that has fluctuated away from the most probable
one as well as for the most probable one, and is a gen-
eralization of thermodynamic entropy that is defined only
for the equilibrium state.

When the problems are different, the entropies are
different, Sometimes confusions occur, however, when
expressions of entropy which resemble each other are
used in different problems. We will discuss an example
that has caused confusion in understanding the maximum
entropy image-restoration problem. In treating speckle
patterns formed by lasers, Dainty?® introduces the prob-
ability density function p(D of light intensity /, indepen-
dent of where in the pattern / exists, and writes the en-
tropy as

3=-fp(1)mp(l)dl. (8.1)

This is the legitimate entropy function for his problem
when no contribution from the a priori probability is as-
sumed, But the question he is trying to answer is dif-
ferent from ours and hence the physical content of the
entropy expression (8, 1) is different from ours,

"In the speckle pattern statistics, in deriving (8.1) one
calculates the number of ways I, that all the different
spatial patterns can be formed consistent with the un-
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known intensity probability distribution {p(/)} to be de-
termined and writes the entropy Inl’,. This formulation
of the problem does not lead to a unique two-dimensional
pattern corresponding to a maximum of the entropy.
Many patterns can be found, each of which satisfies the
calculated distribution function corresponding to the
maximum entropy.

In the problem of maximum entropy image restora-
tion, on the other hand, the value of the intensity of each
cell over a two-dimensional space is given an assumed
fixed trial value. We ask in how many ways I', the in-
tensity at the cell 1 can be formed by taking into account
the a priori degeneracy associated with the intensity at
the point and any ensemble contribution if appropriate.
The entropy is then derived as InT', for the cell i and
then summed over all cell positions over the two-dimen-
sional space. This is what we explained in Secs. II and
V. The entropy is then maximized and a unique two-
dimensional pattern is derived corresponding to it,

The basic difference between the speckle pattern sta-
tistics problem and the maximum entropy image prob-
lem is, therefore, that in the latter a unique pattern is
calculated corresponding to the maximum entropy,
whereas inthe former a group of many patterns isderived
from the intensity distribution corresponding tothe maxi-
mum entropy of that problem. This difference leads to an-
other important consequence with regard to the “smooth-
ness” and the “disorder” of the pattern when the entropy
is maximized. Suppose one asks for the pattern corre-
sponding to the maximum of the entropy in the speckle
statistics example. When (8,1) is maximized with only
the constraint that the average (/) of [ is given (together
with the normalization constraint), thenthe result is that
p(I)=(I)exp(-I/{I)). This means the local intensity
(1) can take various different values and hence the actual
patterns are not “smooth.” On the other hand, when the
entropy of the maximum entropy image-restoration
problemis maximized with only the constraint that the
average intensity is given (p,’s are normalized), the
local intensities p, (i indicating the ith cell location) are
constant and independent of ¢, resulting in a “smooth”
flat pattern with the same intensity everywhere, Such
a flat pattern in the speckle statistics would be expressed
p(I)=5(I - I,) rather than the negative exponential distri-
bution, This is only an illustration of the difference; it
is not meant to imply that the one method always gives
“smooth” and the other method “not smooth” results,
Different constraints could reverse the situation, We
avoid discussing the poorly defined concept of “disorder”
in the context of two-dimensional patterns. Disorder
should not be confused with the degree of smoothness,
as thev are independent concepts,

The two problems compared in this section use the
same basic concept of the entropy InI', but the way the
maximum entropy behaves seems quite different; this
is only because the proklems are different,

IX. SUMMARY AND CONCLUSION

In the maximum entropy (ME) image-restoration for-
mulation, there are two different expressions for entropy
now in use; for short, we call them the logB and the
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~ BlogB expressions (8 being the local brightness of
the object, or the special spectral energy). In the
present paper, we develop a general form for entropy
that should be used in the ME restoration method, and
classify the conditions under which the above two ex-
pressions are valid.

We use the original definition of entropy by Boltzmann
and Planck, and find the most probable object pattern
(restricted by the measured image), In other words, the
entropv to be maximized is the logarithm of the proba-
bslity that an object pattern occurs,

The object pattern is defined by the distribution of the
numher of photons n, over the cells =1, 2,... in the
object space. The probability [q,(m)] mentioned in the
prece ling paragraph is discussed in Sec, II, and is
based 7n the Bose-Einstein statistics, wlich photons
obey. It is proportional to the number of ways the n,
photons (in the ith object cell) can be distributed over 2
degrees of freedom:

(n.+2-1)!
nt{z-1)! °

Section III discusses in detail how z can be estimated.
Based on this expression for ¢,(n,), Sec. O interprets
the two entropy expressions as the two limiting cases:
[B] when n, »2>1, logq,(n,) leads to the logB expres-
sion for the entropy, and {C] when z »>n,, it leads to the
- BlogB form of entropy.

q(("4)=

The relation between the entropy s, =logg,(n,) and the
entropy familiar in information theory is discussed in
Sec. V, using the ensemble for which 7,, an average
over the ensemble, is specified rather than n,. With n
specified, the twodistinctions [B) and [C] above remain
the same, The third case, [A], when #, >z =1 (the cur-
rent applications of the ME method for power spectral
estimation belong to this limit) leads to the logB expres-
sion when the ensemble formulation is used.
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Comments on **Spectral Estimation: An Impossibility?"
B. H. SOFFER asp RYOICH! KIKUCHI

Abstract -Spectral estimation is possible from a finite portion of the
autocorvelation function, The ambiguity of a multiplicity of permissible
spectra all consistent with the data is the very reason why it is possible
because each possible spectrum has a different probability. Maximum
entropy estimation (MEE) picks the most probable one as the estimate.

In a recent letter |1}, Nitzberg questioned the possibility of making
spectral estimates using only a portion of the autocorrelation function
of the data because of the ambiguity arising from the multiplicity of
possible spectra that are consistent with the data. Restricting the class
of spectra to a particular class of network models as Nitzberg would
suggest, or equivalently determining the appropriate underlying statistics
(eg., the all-pole network model in estimation theory or equivalently
its underlying Gaussian statistics in complex amplitudes) [2] still would "
leave the ambiguity of a multiplicity of possible spectra all compatible
with the given data. The multiplicity, however, is the very reason that
we can employ the tools of estimation theory. Estimation theory is
probabilistic and provides both an estimate and a degree of confidence
in the estimate.

MEE, for example, chooses the most probable member of this set of
possibilities for the estimate [2]. Entropy is defined in this context as
the logarithm of the probability that a spectrum occurs. The details of
this interpretation, which makes explicit the probabilistic foundation
of MEE, can be found in Reference {2].

Manscript received March 23, 1979. This work was supported by the
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Reply! by R. Nitzberg?

Sotfer and Kikucki state that spectral estimation is possible. They
recommend the MEM and justify the recommendation by stating the
well-known property that the technique maximizes a particular integral
involving the power spectrum (entropy) under the constraint that cer-
tain other integrals involving the power spectrum are specified values
(the known sampled autocorrelation values). From the viewpoint of
modern statistical estimation theory, this particular estimator is one of
a nondenumerable set of possible estimators. Thus is should be clear
that the question of whether or not it is possible to estimate spectra
cannot refer to whether an estimator exists but whether it can be
shown that a particular one has some desirable property.

The usual estimation theory criterion for choosing a particular es-
timator is small error. Often, it is not known how to best select one
estimator from the set of all possible; and, in order to simplify the
problem, the set of estimators that is being considered is restricted. In
one sense, the restriction is arbitrary but in another it is not. The
restriction is made to a set with tractable mathematical properties.
Thus sometimes estimators are constrained to be linear functions of
the data for no reason other than nonlinear functions are hard to
analyze. However, there are many wellknown cases where the best
linear estimators have substantially larger error than the best estimator.

This philosophy of estimation theory relates to MEM spectral estima-
tion. [t is agreed that MEM is an extremely valuable technique. Ex-
amples abound of the superiority of this technique compared to more
conventional spectral estimation techmiques. However, as with esti-
mators, does the MEM procedure always have small error? As shown
by Gutowski ef al. [3], there are examples where MEM gives very bad
results. A question of interest is, can it be predicted when (or if) MEM
Is applicable”?

A main concern when using MEM should be that tne concept of
maximizing entropy is extremely nebulous and it may not be a reason-
able cniterion. Spectral estimation by MEM is a restriction to a class of
estimators with tractable mathematical properties just as is the afore-
mentioned restriction to linear estimators.  This restriction is clear
when the MEM procedure (as shown by Vanden Bos [4}) is recast into
the all-pole network algorithm. He shows that MEM is equivalent to
computing the M coefficients of an all-pole network that fiis the known
M values of the autocorrelation function. If the assumption of an M-
pole network fits the problem at hand, this is a reasonable procedure.
If the assumption 15 totally unreasonable it should be discarded. It it
15 not known whether or not the assumption is reasonable, one should
be concerned and not adament that this :s the “'best’ procedure. As
one example of this tlexibility, even when a data stream of M points s
obtained, so that an M point autocorreiation function sequence can be
estimated, the number of feedback coefficients of the all-polc network
(the number of autocorreiation values estimated) is often taken as
substantially less than M In practice, there is not a unique MEM
estimated spectrum but many depending upon how many poles are
used in the estimating netwotrk. Other criteria are then imposed to
choose the preferred MEM spectrum {5].

To summarize the above, there are a nondenumerable number of
spectral estimators. Some of these can be phased in terms of networks
with poles and zeroes. The restnction to estimation using the all-pole
network (equivalent to maximizing entropy) is made primarily to
smplity the mathematics. This is an extremely valuabie property. The
aspect of simplification is emphasized not to denigrate the technique,

'Manuscript received June 25, 1979,
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but to clardy under what conditions ss should be expected that the
procedure wil}l work well. [t 1s known that ot in truth, the network
generating the data s an all-zero network, MEM works tess well thun
other less easily computed procedures. It enough about the true
state of nature 15 known su that the physics of the probiem predicts
troubles for MEM, do not use it It the physics of the problen i
completely unknown. spectral estimation 15 uhpossble in the sense of
guaranteeing good estimation of the spectral density

It 15 hustoncally cbvious tha even lot this Latter conditon ot lack ot
knowledge. the measured duty Joes give considerable information abour
the specttum. This 1s because when a truncated autocorrelation tun.
tion s avadable, this can allow exact evaluahion ot some mteyrals
the spectrum  Note that the output a spectrum analyzer is gpiven by
integrals of this form. Speatically, when a random process 1s passed
through a fiiter, the output power P, 1s given by

P, = J S\ HN R df o

where S,(f) 1s the input process and H(f) is the transter function ot
the filter By Parceval's theorem, 1t1s also given by

P,,:f Ry(r)Rp(r) dr )

where R,(r) and R,(r) are the autocorrelation tunctions ot the pro-
cess and filter, respectively. It the filter impulse response is of Ninyte
duration Tg, then Rp(r) 15 of duration 2Tg. The situation stated 1s
that Ry(r) 1s known exactly for 71 < 7. When 2T 15 less than Ty,
the integral in (2) can be evaluated exactly. For a spectrum analy zet
application, this is approximately equivalent to the statement than
when the process is passed through a narrow-band filter tuned to ar.
center frequency, the filter's power output can be determined as long
as the reciprocai of the filter bandwidth 1s larger than 7, Thus
though the detailed structure of the power spectrum cannot, in
general, be determined on the basis of the truncated autocorrelation
function, the output of a spectrum analyzer can be computed when
the spectrum analyzer's frequency resolution 1s not “excessive.’’

Further Comments by B. H. Soffer and R. Kikuchi

We agree that it would be unreasonable to use the MEM when the
physics of the problem is not known. When known, the concept of the
MEM is not nebulous. The MEM is not limited to the form introduced
by Burg based on Gaussian statistics; other forms of entropy may be
dictated by the problem at hand [2].
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